

EPICS Channel Access

2006

kasemirk@ornl.gov

Channel Access

- The main CA client interface is the "C" library that comes with EPICS base
 - Internally uses C++, but API is pure C.
- Almost all other CA client interfaces use that C library
 - Exception: New pure Java CAC, which for now still has some issues.
- Full documentation of the C API: "EPICS R3.14 Channel Access Reference Manual", Jeff Hill, on APS EPICS web page.
 - See same web site for copies of previous EPICS training material that basically presents every routine in the API.
 - This time:
 - Brief makeBaseApp.pl, Matlab, Java examples.
 - Point to some fundamental issues.

makeBaseApp.pl

Includes a template for basic CA client in C:

- Start with this: makeBaseApp.pl -t caClient cacApp make
- Result: bin/linux-x86/caExample <some PV> bin/linux-x86/caMonitor <file with PV list>
- Then read the sources, compare with the reference manual, and edit/extend to suit your needs.

makeBaseApp's caExample.c

• Minimal CA client program.

- Fixed timeout, waits until data arrives.
- Requests everything as 'DBR_DOUBLE'.
 - ... which results in values of C-type 'double'.
 - See db_access.h header file for all the DBR_... constants and the resulting C types or structures.
 - In addition to the basic DBR_<type> requests, it is possible to request packaged attributes like DBR_CTRL_<type> to get { value, units, limits, ...} in one request.

Excerpt from db_access.h

/* values returned for each field type

DBR DOUBLE returns a double precision floating point number

DBR_CTRL_DOUBLE returns a control double structure (dbr_ctrl_double)

```
/* structure for a control double field */
```

struct dbr_ctrl_double{

dbr_short_t	status;	/* status of value */
dbr_short_t	severity;	<pre>/* severity of alarm */</pre>
dbr_short_t	precision;	/* number of decimal places */
dbr_short_t	RISC_pad0;	/* RISC alignment */
char	units[MAX_UNITS_SIZE];	/* units of value */
dbr_double_t	upper_disp_limit;	<pre>/* upper limit of graph */</pre>
dbr_double_t	<pre>lower_disp_limit;</pre>	/* lower limit of graph */
dbr_double_t	upper_alarm_limit;	
dbr_double_t	upper_warning_limit;	
dbr_double_t	<pre>lower_warning_limit;</pre>	
dbr_double_t	<pre>lower_alarm_limit;</pre>	
dbr_double_t	upper_ctrl_limit;	/* upper control limit */
dbr_double_t	<pre>lower_ctrl_limit;</pre>	/* lower control limit */
dbr_double_t	value;	/* current value */

};

*

*

*/

makeBaseApp's caMonitor.c

Better CA client program.

- Registers callbacks to get notified when connected ot disconnected
- Subscribes to value updates instead of waiting.
- ... but still uses the same data type (DBR_STRING) for everything.

Ideal CA client?

- Use callbacks for everything
 - no idle 'wait', no fixed time outs.
- Upon connection, check the channel's native type (int, double, string, ...)
 - to limit the type conversion burden on the IOC.
- ... request the matching DBR_CTRL_<type> once
 - to get the full channel detail (units, limits, ...).
- ... and then subscribe to DBR_TIME_<type> to get updates of only time/status/value
 - so now we always stay informed, yet limit the network traffic.
 - Only subscribe once, not with each connection, because CA client library will automatically re-activate subscriptions!
- This is what EDM, archiver, ... do.
 - Quirk: They don't learn about online changes of channel limits, units,
 Doing that via a subscription means more network traffic, and CA doesn't send designated events for 'meta information changed'.

Side Note: SNL just to get CAC help

 This piece of SNL handles all the connection management and data type handling:

```
- double value;
assign value to "fred";
monitor value;
```

Extend into a basic 'camonitor':

```
- evflag changed;
sync value changed;
```

```
ss monitor_pv
{
   state check
   {
     when (efTestAndClear(changed))
      {
        printf("Value is now %g\n", value);
   } state check
```


Quick Hacks, Scripts

- In many cases, one can get by just fine by invoking the command-line 'caget' from within bash/perl/python/php.
- Especially if you only need to read/write one value of a PV, not a subscription!
- There are more elaborate CAC bindings available for perl/python/php
 - But that means you have to find, build and later maintain these!
 - A basic p* script is portable, but you'd have to install the CAC-for-p* binding separately for Linux, Win32, MacOS...

Perl Example

use English;

```
# Get the current value of a PV
# Argumment: PV name
# Result: current value
sub caget($)
```

```
{
```

```
my (\$pv) = @ARG;
open(F, "caget -t $pv |") or die "Cannot run 'caget'\n";
$result=<F>;
close(F);
chomp($result);
return $result;
```

```
}
```

```
# Do stuff with PVs
$fred = caget("fred");
$jane = caget("jane");
$sum = $fred + $jane;
printf("Sum: %g\n", $sum);
```


Matlab 'MCA' Extension

- Same setup & maintenance issue as for p/p/p!
 - … but may be worth it, since Matlab adds tremendous number crunching and graphing.
- Initial setup
 - Get MCA sources (see links on APS EPICS web)
 - Read the README, spend quality time with MEX.
- Assume that's done by somebody else
 - You are in the SNS control room
 - 'caget' from EPICS base works
 - Matlab works (try "matlab -nojvm -nodesktop")

Do this once:

- cd \$EPICS EXTENSIONS/src/mca
- source setup.matlab
- … and from now on, Matlab should include MCA support

MCA Notes

- Basically, it's a chain of
 - pv = mcaopen('some_pv_name');
 - value = mcaget(pv);
 - mcaput(pv, new_value);
 - mcaclose(pv);
- Your pv is 'connected' from ..open to ..close
 - When getting more than one sample, staying connected is much more efficient than repeated calls to 'caget'.
- Try 'mca<tab>' command-line completion to get a list of all the mca... commands
- Run 'help mcaopen' etc. to get help

Matlab/MCA Examples

XZ

Command Window

```
>>
```

```
>> fred pv = mcaopen('fred');
>> jane pv = mcaopen('jane');
>> fred value = mcaget(fred pv);
>> jane value = mcaget(jane pv);
>> fred value + jane value
ans =
    0.3476
>> alan pv = mcaopen('alan');
>> alan value = mcaget(alan pv);
>> plot(alan value);
>> mcaclose(alan pv);
>> mcaclose(jane pv);
>> mcaclose(fred pv);
>>
>> help mcaopen
MCAOPEN open a Channel Access connection to an EPICS Process Variable
    H = MCAOPEN(PVNAME);
        If successful H is a unique nonzero integer handle associated with this PV.
        Returned handle is 0 if a connection could not be established
    [H1, ..., Hn] = MCAOPEN(PVNAME1, ..., PVNAMEn);
        Is equivalent to but more efficient than multiple single-argument calls
            \tilde{H1} = MCAOPEN(PVNAME1);
            . . .
            Hn = MCAOPEN(PVNAMEn);
```


MCA Value Subscription

File Edit Debug Deskto	MATLAB p Window Help	
🗋 🕞 🐰 🖷 🛍 က က	🎼 🖆 🛃 🂡 /Users/ky9	
Shortcuts 🗷 How to Add 🗷 V	Vhat's New	
5 X	A Figures – Figure 1	
× * D 🚔 🖬 🚑 🔍 Q	.«)@ 🐙 🗖 📰 🗖 🗖	
-0.4		· · · · · · · · · · · · · · · · · · ·
$\rightarrow \Lambda$		
-0.6		-
-0.8		
-0.0 - \		1
-1-	٨	_
	×\	Λ
-1.2 -	γ . Λ	A A / \ -
	MA MA	/~~~/
-1.4 -		/
-1.6 -	· · · · · · · · · · · · · · · · · · ·	
-1.0	$\langle A \rangle$	
-1.8 -	V/	\-
	*	2
-2	40 60 80	100 120
5 X	Command Window	
>> vals=[];		
>> pv=mcaopen('fred');	<pre>s mcacache(pv)]; plot(vals);');</pre>	
<pre>>> mcamontimer('start') >> price_of_StripTool =</pre>		
>> price_of_Matlab_witho	ut_any_toolboxes = 1900;	
)∢
📣 Start		

Java

There is actually a JNI and a pure Java binding.

- Only difference in initialization, then same API.
- Usage very much like C interface, "real programming" as opposed to Matlab, but in a more forgiving Java VM.
- See Docs/Java CA example.

Acknowledgements

Channel Access on every level in detail:
 – Jeff Hill (LANL)

- makeBaseApp.pl
 - Ralph Lange (BESSY) and others

• MCA

- Andrei Terebilo (SLAC) is the original author,
- Carl Lionberger maintained it for a while (then SNS)

Java CA

- Eric Boucher is the original author (then APS),
- Matej Sekoranja maintains it; he added the pure java version (Cosylab)

