
Network_Driver_and_Device.txt
/tmp/

1/5
01/26/2004

// Network driver example:
//
// Assume we have a networked device that listens on
// a TCP port ’7654’. A record like the following should
// read from that device.

record (ai, "Netdev")
{

field (DTYP, "Netdev")
field (INP , "@localhost:7654")
field (SCAN, "1 second")

}

−−
−−
−−

/* drvNetdev.h
 *
 * Example for a networked driver that’s suitable for integration
 * into an EPICS IOC.
 *
 * This demo driver is meant to be used with e.g. "netcat":
 * Run netcat as a TCP server, simulating a networked
 * device that’s awaiting requests.
 *
 * The driver will connect to the TCP server and send a request "Value?".
 * You then have about 2 seconds to type a number.
 * If you type a number, that’s the value that the driver will read.
 * If you don’t type anything useful in time, the driver will time out
 * and try again later.
 *
 * kasemir@lanl.gov
 */

/* EPICS Base */
#include <osiSock.h>
#include <epicsMutex.h>

typedef struct
{
 struct sockaddr_in ip ;
 epicsMutexId mutex; /* lock before touching anything else in here! */
 int is_valid ; /* value is only valid if is_valid > 0 */
 int value ; /* most recent value from the device */
} drvNetdev ;

/* Launch a driver thread for the given address (Format: "IP:port").
 * The driver will continually try to connect to the address&port.
 * While connected, it’ll send requests.
 * Whenever receiving a response, it will update the drvNetdev.value.
 * Any error will show up as drvNetdev.is_valid = 0.
 */
drvNetdev * drvNetdev_init(const char * address);

−−
−−
−−

/* System */
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
/* EPICS Base */
#include <epicsThread.h>
#include <iocsh.h>
#include <epicsExport.h>
/* This driver */
#include "drvNetdev.h"

static int verbosity = 10;

Network_Driver_and_Device.txt
/tmp/

2/5
01/26/2004

/* Driver task that tries to connect to the network device,
 * then sends requests and parses the response.
 *
 * This code is EPICS−specific because we use "epicsSocketCreate" etc.
 * This allows the code to run on any OS supported by EPICS base:
 * Linux, Solaris, Win32, vxWorks, RTEMS,
 *
 * Replacing epicsSocketCreate() with socket(),
 * epicsMutexCreate() with e.g. pthread_mutex_init() and so on
 * would turn this into code that knows nothing about EPICS
 * and is specific to Linux.
 */
static void driver_task(drvNetdev *drv)
{
 SOCKET s;
 char buf [100];
 fd_set fds;
 struct timeval timeout ;
 int total_len , len ;
 int waiting_for_response ;

 while (1)
 {
 s = epicsSocketCreate(AF_INET, SOCK_STREAM, 0);
 sockAddrToDottedIP((const struct sockaddr *)&drv−>ip,
 buf, sizeof (buf));
 if (verbosity > 1)
 printf("Connecting to %s\n" , buf);
 if (connect(s, (const struct sockaddr *)&drv−>ip, sizeof (drv−>ip))
 != 0)
 {
 fprintf(stderr, "driver_task cannot connect to %s\n" , buf);
 epicsThreadSleep(5.0);
 continue ; /* retry after 5 seconds */
 }
 if (verbosity > 1)
 printf("Connected\n");
 while (1)
 {
 if (verbosity > 1)
 printf("Sending request\n");
 if (write(s, "Value?\n" , 7) != 7)
 break ;
 /* Read response, ending in ’\n’ */
 waiting_for_response = 1;
 total_len = 0;
 while (waiting_for_response)
 { /* try to read some characters */
 FD_ZERO(&fds);
 FD_SET(s, &fds);
 timeout.tv_sec = 5; /* 5 second read timeout */
 timeout.tv_usec = 0;
 if (select(s+1, &fds, 0, 0, &timeout) > 0 &&
 (len = read(s, buf+total_len, sizeof (buf)−total_len)) > 0)
 { /* Anything? Add to buffer. */
 total_len += len;
 buf[total_len] = ’\0’ ;
 if (verbosity > 1)
 printf("Got: ’%s’\n" , buf);
 if (strchr(buf, ’\n’))
 { /* Is it a full response ? */
 epicsMutexLock(drv−>mutex);
 drv−>value = atoi(buf);
 drv−>is_valid = 1;
 epicsMutexUnlock(drv−>mutex);
 waiting_for_response = 0;
 }
 }
 else
 { /* Nothing. Time out, start over. */
 if (verbosity > 1)

Network_Driver_and_Device.txt
/tmp/

3/5
01/26/2004

 printf("Timeout / no data\n");
 epicsMutexLock(drv−>mutex);
 drv−>is_valid = 0;
 epicsMutexUnlock(drv−>mutex);
 waiting_for_response = 0;
 }
 }
 }
 epicsMutexLock(drv−>mutex);
 drv−>is_valid = 0;
 epicsMutexUnlock(drv−>mutex);
 if (verbosity > 1)
 printf("Disconnecting\n");
 epicsSocketDestroy(s);
 }
}

drvNetdev * drvNetdev_init(const char * address)
{
 if (verbosity > 1)
 printf("drvNetdev_init(%s)\n" , address);
 drvNetdev *drv = calloc(1, sizeof (drvNetdev));
 if (drv)
 {
 aToIPAddr(address, 7543, &drv−>ip);
 drv−>mutex = epicsMutexCreate();
 epicsThreadCreate("drvNetdev" ,
 epicsThreadPriorityLow,
 epicsThreadStackMedium,
 (EPICSTHREADFUNC)driver_task, drv);
 }
 return drv;
}

/* EPICS Driver support entry table: Don’t need one. */

/* IOC Shell Registration Stuff.
 * None of this is required to use the driver
 * from an EPICS device support module.
 * Registration allows interactive stand−alone testing
 * of the driver from the EPICS IOC shell,
 * which can be useful when debugging the driver.
 * Yes, it’s ugly but there really isn’t much to it.
 */
static const iocshArg verbArg0 = { "value" , iocshArgInt};
static const iocshArg * const verbArgs [1] = {&verbArg0};
static const iocshFuncDef verbosityDef = { "drvNetdev_verbosity" , 1, verbArgs};
static void verbosityCall(const iocshArgBuf * args)
{ verbosity = args[0].ival; }

static const iocshArg initArg0 = { "address" , iocshArgString};
static const iocshArg * const initArgs [1] = {&initArg0};
static const iocshFuncDef initDef = { "drvNetdev_init" , 1, initArgs};
static void initCall(const iocshArgBuf * args)
{ drvNetdev_init(args[0].sval); }

static void drvNetdevRegistrar(void)
{
 static int firstTime = 1;
 if (firstTime)
 {
 firstTime = 0;
 iocshRegister(&verbosityDef, verbosityCall);
 iocshRegister(&initDef, initCall);
 }
};
/* Refer to this in DBD: registrar(drvNetdevRegistrar) */
epicsExportRegistrar(drvNetdevRegistrar);

−−
−−
−−

Network_Driver_and_Device.txt
/tmp/

4/5
01/26/2004

/* devNetdev.c
 * Device support: drvNetdev <−> ai record
 *
 * Note that most of this is copied from EPICS base’s
 * src/dev/soft/devAiSoftRaw.c
 */
/* System */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
/* EPICS base */
#include "alarm.h"
#include "dbDefs.h"
#include "dbAccess.h"
#include "dbEvent.h"
#include "recGbl.h"
#include "recSup.h"
#include "devSup.h"
#include "link.h"
#include "aiRecord.h"
#include "epicsExport.h"
/* Driver */
#include "drvNetdev.h"

static long init_record(aiRecord *rec)
{
 if (rec−>inp.type == INST_IO)
 {
 /* We expect INP="<IP>:port".
 * Init. driver, park the driver info pointer
 * in the "device private" member of the record.
 */
 rec−>dpvt = drvNetdev_init(rec−>inp.value.instio. string);
 }
 else
 {
 recGblRecordError(S_db_badField, rec,
 "devAiNetdev (init_record) Illegal INP field");
 return S_db_badField;
 }
 return 0;
}

static long read_ai(aiRecord *rec)
{
 drvNetdev *drv = (drvNetdev *)rec−>dpvt;
 if (drv)
 {
 epicsMutexLock(drv−>mutex);
 if (drv−>is_valid)
 {
 rec−>rval = drv−>value;
 rec−>udf = 0;
 }
 else
 {
 recGblSetSevr(rec, READ_ALARM, INVALID_ALARM);
 }
 epicsMutexUnlock(drv−>mutex);
 }

 return 0;
}

/* Create the dset for devAiSoftRaw */
struct
{

long number ;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;

Network_Driver_and_Device.txt
/tmp/

5/5
01/26/2004

DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

} devAiNetdev =
{

6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL

};
/* For DBD: device(ai,INST_IO,devAiNetdev,"Netdev") */

epicsExportAddress(dset,devAiNetdev);

−−
−−
−−

Example DBD file that loads the network device driver & device support
together with EPICS base records

include "base.dbd"
registrar(drvNetdevRegistrar)
device(ai,INST_IO,devAiNetdev, "Netdev")

