
Managed by UT-Battelle
for the Department of Energy

Kay Kasemir

ORNL/SNS

kasemirk@ornl.gov

Sept. 2014

EPICS
‘makeBaseApp’,

IOC Binaries

2 Managed by UT-Battelle
for the Department of Energy 2

EPICS IOC

Channel Access

LAN

Sequencer

Device Support

I/O Hardware

IOC

Database

•  Ideally: Just
Database records
–  Known & well tested

building blocks
–  Remote access
–  Access security
–  ‘bumpless’ reboot

•  Sometimes: Need
Sequencer code
–  C(++) code, nobody else

will understand it

•  Need Device Support
–  Include existing device support? Easy

enough
–  Have to write new device (driver) code?

Running with scissors!

3 Managed by UT-Battelle
for the Department of Energy 3

‘softIoc’

Channel Access

LAN

IOC

Database

Binary with
Database engine
and
Channel Access.

Run as many
instances as
needed.

Need sequencer, device support?
à Create your own IOC application binary!

4 Managed by UT-Battelle
for the Department of Energy

Who needs custom IOC binary?
Accelerator: One per subsystem

–  Vacuum: Support for AllenBradley PLC
–  LLRF: Support for LLRF hardware

à Different maintainers, different needs,

 then many instances per subsystem

Beamlines: One (few) per beamline?
–  CG-1D:

One binary with support for Camera, Parker6K, ‘Stream’ device.
Separate instance for Camera, Motors, ICP, Robofocus, Scan
support.

–  Choppers: One binary for all choppers?

à Each beam line must have different binary

 to allow independent updates.
 Within a beam line, try to keep low number?

5 Managed by UT-Battelle
for the Department of Energy

‘makeBaseApp.pl’

•  Creates skeleton for custom IOC
–  Directory structure
–  Makefiles
–  Examples: *.db, *.st, driver/device/record *.c
–  IOC startup file

•  Two extremes
–  makeBaseApp.pl –t example

•  Get most everything; you delete what’s not needed

–  makeBaseApp.pl –t ioc
•  Just dirs & Makefiles; you add what’s needed

6 Managed by UT-Battelle
for the Department of Energy

EPICS Build Facility
Is outstanding

• make, perl

• Builds on Linux, Mac,
Windows

• ..for Linux, FreeBSD, OS
X, Windows, vxWorks,
RTEMS, x86, x86_64, ppc,
arm, …

• AppDevGuide

• Functioned for decades
across many changes of
OSs, compilers, …

Is aggravating

• “Why is it not an Eclipse,
Visual C++, Kdeveloper …
project? What about
CMake, GNU automake,
… ?”

• What’s the name of that
option again?

• What’s causing this error
now?

7 Managed by UT-Battelle
for the Department of Energy

‘example’ Example

Go somewhere  
cd ~/EPICSTraining  
"

Create IOC application of type ‘example’,  
using ‘demo’ in the generated names  
makeBaseApp.pl -t example demo  
"

Create IOC startup settings of type ‘example’,  
call it ‘demo’  
makeBaseApp.pl -t example -i demo  
When prompted, use the previously created ‘demo’  
application as the one that the IOC should load "

Compile everything  
make"

Start IOC  
cd iocBoot/iocdemo  
chmod +x st.cmd  
./st.cmd"

8 Managed by UT-Battelle
for the Department of Energy

Directory Layout: Key Files

•  To study the skeleton, check files before the
first ‘make’ or after a ‘make distclean’

makeBaseApp.pl -t example demo  
configure/RELEASE  
configure/CONFIG_SITE  
demoApp/Db/*.db  
demoApp/Db/*.substitutions  
demoApp/Db/Makefile  
demoApp/src/Makefile"

makeBaseApp.pl -t example -i demo  
iocBoot/iocdemo/Makefile  
iocBoot/iocdemo/st.cmd  
"

9 Managed by UT-Battelle
for the Department of Energy

Directory Layout: Generated Files

Beware of difference:

• whateverApp/Db/*
–  Database ‘Sources’. Edit these!

• db/*
–  ‘Installed’ databases, may have macros replaced.

Will be overwritten by next ‘make’!

**/O.Common  
**/O.linux-x86_64  
**/O.*  
db/*  
dbd/*  
include/*  
lib/*  
bin/*  
"

10 Managed by UT-Battelle
for the Department of Energy

*.dbd: Database Descriptions

IOC record types, device support, … are extensible
–  Implement new record type, new device support:

Write C/C++ code for certain interfaces, compile.
–  Somehow ‘register’ this with core IOC code:

*.dbd file

Internals:
VxWorks RTOS, the original IOC target, had
runtime loader and symbol table.
RTEMS, .. don’t necessarily offer this.
EPICS build facility generates IOC startup source
code from *.dbd file.

11 Managed by UT-Battelle
for the Department of Energy

HowTo: Add Support Modules (Device, …)
Example: ‘Autosave’

1. Define path in configure/RELEASE:
AUTOSAVE=/home/controls/epics/R3.14.12.2/support/autosave"

Path to the support directory is usually pulled into a macro, since you often include
more than one support module:

SUPPORT=/home/controls/epics/R3.14.12.2/support  
AUTOSAVE=$(SUPPORT)/autosave"

2. Add binary and DBD info to xyzApp/Db/Makefile:

YourProduct_DBD += asSupport.dbd  
YourProduct_LIBS += autosave"

3. Use the support module in the IOC startup file:
cd ${AUTOSAVE}  
dbLoadRecords "db/save_restoreStatus.db", "P=demo”  
set_requestfile_path("/home/controls/var")"

Details on how to use a support module depend on the specific one, including
names of provided *.dbd, binary, *.db, IOC commands

12 Managed by UT-Battelle
for the Department of Energy

HowTo: Add Database files

1.  Create xyzApp/Db/another.db"
For simple database, can test via
 softIoc –d another.db"

2.  Add to xyzApp/Db/Makefile:
DB += another.db"

3.  make"
Now it’s under db/another.db"

4.  Add to iocBoot/iocwhatever/st.cmd"
dbLoadRecords "db/another.db", "macro=value”"

5.  (Re-)start the IOC

13 Managed by UT-Battelle
for the Department of Energy

Summary

makeBaseApp.pl creates the IOC skeleton

Good practice:
–  Use makeBaseApp.pl –t example… for copy/paste.
–  Create empty operational setup, and only paste-in

what you need.
–  Do it in small steps.

