EPICS Application Developer’s Guide

EPICS Base Release 3.14.12
13 March 2012

Martin R. Kraimer, Janet B. Anderson, Andrew N. Johnson, W. Eric Norum
(Argonne National Laboratory)

Jeffrey O. Hill (Los Alamos National Laboratory)
Ralph Lange, Benjamin Franksen (Helmholtz-Zentrum Berlin)

Peter Denison (Diamond)







Contents

EPICS Applications Developer’s Guide
Table of Contents

1 Introduction
1.1 OVErVIEW . . . . . o o e e e e e
1.2 Acknowledgments . . . . . . . L e

2 Getting Started

2.1 Introduction . . . . . . . . e e e e e e e e e e e e
2.2 Example IOC Application . . . . . . . . . . L e
2.3 Channel Access Host Example . . . . . . . . . . ... .
24 docsh . ...
2.5 Building IOC components . . . . . . . . . . e e
2.6 makeBaseApp.pl . . . .. e e e e e
2.7 vXWorks boot parameters . . . . . . .. ... o e e e e e e e e e e
2.8 RTEMSbootprocedure . . . . . . . . . . . . e e
3 EPICS Overview
3.1 Whatis EPICS? . . . o o o e e e
3.2 BasiCAtributes . . . . ..o e e e e e e e
3.3 JOC Software COMPONENLS . . . . . . v v v v vt v e et e e e e e e e e e e e e e
34 Channel ACCESS . . . . v v v v e i e e e e e e e e e e e e e e e e
35 OPITOOIS . . . o o
3.6 EPICS Core Software . . . . . . . . . . e e e e e e
4 Build Facility
A1 OVEIVIEW . . o v v o e e e e e e e e e e e e e e e e e e e
4.2 BuildRequirements . . . . . . . . ... e
4.3 Configuration Definitions . . . . . . . . . . ... e e e e
4.4 Makefiles . . . . . oL e e e
45 Make . ..o
4.6 Makefile definitions . . . . . . . . . L e e e e e e
47 Table of Makefile definitions . . . . . . . . . . . . . . e e e
4.8 Configuration Files . . . . . . . . .
4.9 Build Documentation Files . . . . . . . . . . .. e e
410 Startup Files . . . . . o . o e e
5 Database Locking, Scanning, And Processing
5.0 OVEIVIEW . . . o o ot o e e e e
5.2 RecordLinks . . . . . . . L e e e e
5.3 Database Links . . . . . . L e e e e e
54 Database Locking . . . . . . . . .. e

13
13
13
15
16
16
19
22
23

25
25
26
26
28
30
30

33
33
35
36
41
42
43
71
78
81
82



CONTENTS

5.5 Database Scanning . . . . . . ... e e 85
5.6 Record Processing . . . . . . . . .. .. e 86
5.7 Guidelines for Creating Database Links . . . . . . . . . ... ... ... ... . ... 86
5.8 Guidelines for Synchronous Records . . . . . . . . . ... L oo &9
5.9 Guidelines for Asynchronous Records . . . . . . . .. . ... 89
5.10 Cached Puts . . . . . . . . . e 91
501 putNotify . . . 91
5.12 Channel Access Links . . . . . . . . . . . . e 91
Database Definition 95
6.1 OVEIVIEW . . . . . o o e e 95
6.2 Summary of Database Syntax . . . . . . . . ... e 95
6.3 General Rules for Database Definition . . . . . . . ... ... ... ... 96
6.4 path addpath—Path Definition . . . . . ... ... ... ... 98
6.5 include-IncludeFile . . . . . . . . . . e 99
6.6 menu-—MenuDeclaration . . . . . .. ... 99
6.7 recordtype —Record Type Declaration . . . . . . . . ... ... ... 100
6.8 device —Device Support Declaration . . . . . . . ... oL oL 103
6.9 driver —Driver Declaration . . . . . . ... .. e 104
6.10 registrar —Registrar Declaration . . . . . .. ... ... . ... oo 104
6.11 variable — Variable Declaration . . . . . . . . . .. ... L 105
6.12 function—Function Declaration . . . . . . .. ... .. ... 106
6.13 breaktable —BreakpointTable . . . . . . . . . . . ... L 106
6.14 record—RecordInstance . . . . . . ... L e 107
6.15 Record Information Item . . . . . . . . ..o 110
6.16 Record Attributes . . . . . . . . . L e e 111
6.17 Breakpoint Tables — Discussion . . . . . . . . . . . .. e 111
6.18 Menu and Record Type Include File Generation. . . . . . . . . . .. ... .. ... .. ... .... 112
6.19 dbExpand . . . . . .. 115
6.20 dbLoadDatabase . . . . . . . . . .. L. e e e 116
6.21 dbLoadRecords . . . . . . . . L 116
6.22 dbLoadTemplate . . . . . . . . . . . e e e e e 117
6.23 dbReadTest . . . . . . . . . 118
IOC Initialization 119
7.1 Overview - Environments requiring a main program . . . . . . . . . . . . . .. ... 119
7.2 Overview - vxWorks . . . . . oL 120
7.3 Overview - RTEMS . . . . . . .. e 120
7.4 TOC Initialization . . . . . . . . . . o e e e e e e e 121
7.5 Pausing an IOC . . . . . o L e e e e 123
7.6 Changing iocCore fixed limits . . . . . . . . . . . . e 124
7.7 InitHOoOKS . . . . o L e e 124
7.8 Environment Variables . . . . . . ... 126
7.9 Initialize Log@ing . . . . . . . L e e e e e e e 126
Access Security 127
8.1 OVEIVIEW . . . . o o o e e 127
8.2 Quick Start . . . . .. e e e e e e e e e e 127
83 User'sGuide . . . . . . . . . e e e 128
8.4 Design Summary . . . . . ... e e e e 133
8.5 Access Security Application Programmer’s Interface . . . . . . .. .. ... oL 136
8.6 Database Access Security . . . . . . . . ... e e 141
8.7 Channel Access SECUTitY . . . . . . . o v v vt it i e e e e e e 143

8.8 Trapping Channel Access WIites . . . . . . . . . . . . . o vttt e e 145



CONTENTS

10

11

12

13

14

8.9 Access Control: Implementation Overview . . . . . . . . . . . . o e
.10 SHructures . . . . . . . . . e e e

IOC Test Facilities

0.1 OVEIVIEW . . . . o o ot e e
9.2 Database List, Get, Put . . . . . . . . . . e e
0.3 Breakpoints . . . . . . . . e e e e e e e e e e e e
9.4 Trace Processing . . . . . . . ... e e e
9.5 ErrorLogging . . . . . . . e e
9.6 Hardware Reports . . . . . . . . . . . e e
9.7 ScanReports . . . . . . L e e
9.8 General Time . . . . . . . . . . e
9.9 Access Security Commands . . . . ... oo
9.10 Channel Access Reports . . . . . . . . . . L
9.11 Interrupt VECtors . . . . . . . . . . . e e
9.12 Miscellaneous . . . . . . . . L e e e e e e e e e e e
9.13 Database System Test Routines . . . . . . . . . . . . . e
9.14 Record Link Reports . . . . . . . . . . o e e e
9.15 Old Database Access TeSting . . . . . . . . . o v v i it et e e e e e e e e e
9.16 Routines to dump database information . . . . . . . ... ... L L

I0C Error Logging

10.1 OVervIew . . . . . . o e e e e e e e e e e e e e e e e
10.2 Error Message Routines . . . . . . . . . . . .. e
10.3 errlog Listeners . . . . . . . . . o e e e e e e e e e
10.4 errlogThread . . . . . . . . L L e e e
10.5 console output and MessSage qUEUE SIZE . . . . . . v v v v v b e e e e e e e e e e e e e e e
10.6 Status Codes . . . . . . . . e e e e e
10.7 10CLOZ .« . o o o e e e e

Record Support

T1L OVEIVIEW . . . o o oo e e e e e e e e e e e e e
11.2 Overview of Record Processing . . . . . . . . . . . . . . e
11.3 Record Support and Device Support Entry Tables . . . . . . .. .. ... ... ... .. ... ....
11.4 Example Record Support Module . . . . . . . . . . . .. e
11.5 Record Support Routines . . . . . . . . . . . e e e
11.6 Global Record Support Routines . . . . . . . . . . . . . e

Device Support

121 OVeIVIEW . . . . o o e e e
12.2 Example Synchronous Device Support Module . . . . . . ... ... ... ... ... ... ...
12.3 Example Asynchronous Device Support Module . . . . . . ... ... ... ... ...
12.4 Device Support Routines . . . . . . . . . . . e e
12.5 Extended Device SUPPOTt . . . . . . . . o o i e e e e e e e

Driver Support
13.1 OVEIrVIEW . . . . o o e e e e e e e e e e
13.2 Device Drivers . . . . . . . . e e e e e e e e

Static Database Access

14.1 OVErVIEW . . . . . . o e e e e
14.2 Definitions . . . . . . . . . . L e e
14.3 Allocating and Freeing DBBASE . . . . . . . . . . .
14.4 DBENTRY Routines . . . . . . . . . . . . e e e e e
14.5 Read and Write Database . . . . . . . . . . . . . . .. e e

145
147

149
149
149
152
153
153
154
155
155
156
158
159
159
160
161
161
162

165
165
166
167
168
168
168
169

171
171
171
172
173
179
183

187
187
188
189
191
192

195
195
195



6 CONTENTS

14.6 Manipulating Record Types . . . . . . . . . . . . L e
14.7 Manipulating Field Descriptions . . . . . . . . . . . . . e
14.8 Manipulating Record Attributes . . . . . . . . . . .. e e e e e
14.9 Manipulating Record Instances . . . . . . . . . . . . . . e e
14.10Manipulating Menu Fields . . . . . . . . . . . . . e
14.11Manipulating Link Fields . . . . . . . . . . . . e
14.12Manipulating MenuForm Fields . . . . . . . . .. . ... . L o
14.13Manipulating Information Items . . . . . . . . .. ... o L
14.14Find Breakpoint Table . . . . . . . . . . . . e
14.15Dump Routines . . . . . . . . . e e e e e
T4 T6Examples . . . . . o o o e e e e e e

15 Runtime Database Access
15.1 OVEIVIEW . . . . o o e e e e e e e e e e e
15.2 Database Include Files . . . . . . . . . . . . . .
15.3 Runtime Database Access OVEIVIEW . . . . . . . . . . . i i it e e e e e e e e
15.4 Database Access Routines . . . . . . . . . . . . e e e e
15.5 Runtime Link Modification . . . . . . . . . . . . . ..
15.6 Channel Access MONItOrS . . . . . . . . . .t i i it e e e e e e e e e e e
15.7 Lock Set Routines . . . . . . . . . . . . . e e e e e
15.8 Channel Access Database Links . . . . . . . . . . . .. .. ...

16 EPICS General Purpose Tasks
16.1 OVEIVIEW . . . . . o o e e e e e e e e
16.2 General Purpose Callback Tasks . . . . . . . . . . . . o
16.3 Task Watchdog . . . . . . . . . . L e

17 Database Scanning
17.1 OVeIVIEW . . . . o ot e e e e e e e e e
17.2 Scan Related Database Fields . . . . . . . . . .. . .. .
17.3 Scan Related Software Components . . . . . . . . . . . oo v vttt
17.4 Implementation OVEIVIEW . . . . . . . . . ot it e e e e e e e

18 TIOC Shell
18.1 Introduction . . . . . . . . . o L e e e
18.2 TOC Shell Operation . . . . . . . . . ottt e e e e e e
18.3 IOC Shell Programming . . . . . . . . . . o i i ittt e e e e

19 libCom
19.1 bucketLib . . . . . . o e e e e e e
19.2 calc . . . .
193 cppStd . . . e
19.4 epicsEXIt . . . . L L e e e
195 cevtFast . . . o o o
19.6 cxxTemplates . . . . . . . o o e e e e e e e e
19.7 dbmf . . . . .
19.8 ellLib . . . . .
19.9 epicsRingBytes . . . . . . . L e e e
19.10epicsRingPointer . . . . . . . . . . L e e e
19.11epicsSTIMer . . . . . . . . e e e e e e e e
19.12 fdmgr . . . . . o e e
19.13freelist . . . . . . L e e e e
19.14gpHash . . . . . . o e e
19.151ogClient . . . . . . . . e e e e e e e
19.16macLib . . . . . . . e e e e e e e

237
237
237
240

243
243
243
244
247

253
253
253
256



CONTENTS

19.17misc . . .

20 libCom OSI libraries

20.1 Overview
20.2 epicsAssert

20.3 epicsEndian . . . ..o L e e e e

20.4 epicsEvent

20.5 epicsFindSymbol . . . . . . . e
20.6 epicsGeneralTime . . . . . . . . . . . . L
20.7 epicsInterrupt . . . . ... L e

20.8 epicsMath

20.9 epicsMessageQUEUE . . . . . . . i L e e e e e e e e e e e e

20.10epicsMutex
20.11epicsStdlib
20.12epicsStdio

20.13epicsStdioRedirect . . . . . . . . L L e e e e e e
20.14epicsThread . . . . . . . . o o L e e e e e

20.15epicsTime

20.160s1P00IStatus . . . . . . . e e e

20.17osiProcess

20.180siSigPipelgnore . . . . . .. e

20.190siSock.h

20.20 Device Support Library . . . . . . . . oL e e e e e e
20.21vxWorks Specific routines and Headers . . . . . . . . . ... ... o Lo

21 Registry
21.1 Registry.h

21.2 registryRecordType.h . . . . . . o oL
21.3 registryDeviceSupport.h . . . . . ..
21.4 registryDriverSupporth . . . . . . . L.
21.5 registryFunction.h . . . . . oL e e e
21.6 registerRecordDeviceDriver.c. . . . . . . . . .. L e e e e
21.7 registerRecordDeviceDriver.pl . . . . . . . . .. L e

22 Database Structures

22.1 Overview

222 Include Files . . . . . . . . . s

22.3 Structures

Index

280

287
287
288
288
289
290
291
293
294
294
296
298
298
299
299
304
310
310
311
311
311
315

317
317
317
318
318
318
318
318

319
319
319
321

323



CONTENTS



Chapter 1

Introduction

1.1 Overview

This document describes the core software that resides in an Input/Output Controller (IOC), one of the major compo-
nents of EPICS. It is intended for anyone developing EPICS IOC databases and/or new record/device/driver support.

The plan of the book is:

Getting Started
A brief description of how to create EPICS support and ioc applications.

EPICS Overview
An overview of EPICS is presented, showing how the IOC software fits into EPICS.

EPICS Build Facility
This chapter describes the EPICS build facility including directory structure, environment and system require-
ments, configuration files, Makefiles, and related build tools.

Database Locking, Scanning, and Processing
Overview of three closely related IOC concepts. These concepts are at the heart of what constitutes an EPICS
I0C.

Database Definition
This chapter gives a complete description of the format of the files that describe IOC databases. This is the
format used by Database Configuration Tools and is also the format used to load databases into an IOC.

I0C Initialization
A great deal happens at IOC initialization. This chapter removes some of the mystery about initialization.

Access Security
Channel Access Security is implemented in IOCs. This chapter explains how it is configured and also how it is
implemented.

I0C Test Facilities
Epics supplied test routines that can be executed via the epics or vk Works shell.

I0C Error Logging
IOC code can call routines that send messages to a system wide error logger.

Record Support
The concept of record support is discussed. This information is necessary for anyone who wishes to provide
customized record and device support.



10 CHAPTER 1. INTRODUCTION

Device Support
The concept of device support is discussed. Device support takes care of the hardware specific details of record
support, i.e. it is the interface between hardware and a record support module. Device support can directly
access hardware or may interface to driver support.

Driver Support
The concepts of driver support is discussed. Drivers, which are not always needed, have no knowledge of records
but just take care of interacting with hardware. Guidelines are given about when driver support, instead of just
device support, should be provided.

Static Database Access
This is a library that works on both Host and IOC. For IOCs it works and on initialized or uninitialized EPICS
databases.

Runtime Database Access
The heart of the IOC software is the memory resident database. This chapter describes the interface to this
database.

Device Support Library
A set of routines are provided for device support modules that use shared resources such as VME address space.

EPICS General Purpose Tasks
General purpose callback tasks and task watchdog.

Database Scanning
Database scan tasks, i.e. the tasks that request records to process.

I0C Shell
The EPICS IOC shell is a simple command interpreter which provides a subset of the capabilities of the vx Works
shell.

libCom
EPICS base includes a subdirectory src/libCom, which contains a number of ¢ and c++ libraries that are used
by the other components of base. This chapter describes most of these libraries.

libCom OSI
This chapter describes the libraries in libCom that provide Operating System Independent (OS]) interrfaces used
by the rest of EPICS base. LibCom also contains operating system dependent code that implements the OSI
interfaces.

Registry
Under vxWorks osiFindGlobalSymbol can be used to dynamically bind to record, device, and driver support.
Since on some systems this always returns failure, a registry facility is provided to implement the binding. The
basic idea is that any storage meant to be “globally” accessable must be registered before it can be accessed

Database Structures
A description of the internal database structures.

Other than the overview chapter this document describes only core IOC software. Thus it does not describe other
EPICS tools which run in an IOC such as the sequencer. It also does not describe Channel Access.

The reader of this manual should also be aware the following additional documentation:

o EPICS Record Reference Manual, Philip Stanley, Janet Anderson and Marty Kraimer

EPICS R3.14 Channel Access Reference Manual, Jeffrey O. Hill

vxWorks Programmer’s Guide, Wind River Systems

vxWorks Reference Manual, Wind River Systems

RTEMS C User’s Guide, Online Applications Research



1.2. ACKNOWLEDGMENTS 11
1.2 Acknowledgments

The basic model of what an IOC should do and how to do it was developed by Bob Dalesio at LANL/GTA. The
principle ideas for Channel Access were developed by Jeff Hill at LANL/GTA. Bob and Jeff also were the principle
implementers of the original IOC software. This software (called GTACS) was developed over a period of several
years with feedback from LANL/GTA users. Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the IOC software with the major goal being to provide
easily extendible record and device support. Marty Kraimer (ANL/APS) was primarily responsible for designing the
data structures needed to support extendible record and device support and for making the changes needed to the IOC
resident software. Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and IOC modules neces-
sary to support the new facilities. Frank Lenkszus (ANL/APS) made extensive changes to the Database Configuration
Tool (DCT) necessary to support the new facilities. Janet Anderson developed methods to systematically test various
features of the IOC software and is the principal implementer of changes to record support.

During 1993 and 1994, Matt Needes at LANL implemented and supplied the description of fast database links and the
database debugging tools.

During 1993 and 1994 Jim Kowalkowski at ANL/APS developed GDCT and also developed the ASCII database in-
stance format now used as the standard format. At that time he also created dbLoadRecords and dbLoadTemplate.

The build utility method resulted in the generation of binary files of UNIX that were loaded into IOCs. As new
IOC architectures started being supported this caused problems. During 1995, after learning from an abandoned effort
now referred to as EpicsR¥, the build utilities and binary file (called default .dctsdr) were replaced by all
ASCII files. The new method provides architecture independence and a more flexible environment for configuring the
record/device/ driver support. This principle implementer was Marty Kraimer with many ideas contributed by John
Winans and Jeff Hill. Bob Dalesio made sure that we did not go too far, i.e. 1) make it difficult to upgrade existing
applications and 2) lose performance.

In early 1996 Bob Dalesio tackled the problem of allowing runtime link modification. This turned into a cooperative
development effort between Bob and Marty Kraimer. The effort included new code for database to Channel Access
links, a new library for lock sets, and a cleaner interface for accessing database links.

In early 1999 the port of iocCore to non vxWorks operating systems was started. The principle developers were Marty
Kraimer, Jeff Hill, and Janet Anderson. William Lupton converted the sequencer as well as helping with the posix
threads implementation of osiSem and osiThread. Eric Norum provided the port to RTEMS and also contributed the
shell that is used on non vxWorks environments. Ralph Lange provided the port to HPUX.

Many other people have been involved with EPICS development, including new record, device, and driver support
modules.



12

CHAPTER 1. INTRODUCTION



Chapter 2

Getting Started

2.1 Introduction

This chapter provides a brief introduction to creating EPICS IOC applications. It contains:
e Instructions for creating, building, and running an example IOC application.

e Instructions for creating, building, and executing example Channel Access clients.

Briefly describes iocsh, which is a base supplied command shell.

Describes rules for building IOC components.

Describes makeBaseApp.pl, which is a perl script that generates files for building applications.
e Briefly discusses vxWorks boot parameters

This chapter will be hard to understand unless you have some familarity with IOC concepts such as record/device/driver
support and have had some experience with creating ioc databases. Once you have this experience, this chapter pro-
vides most of the information needed to build applications. The example that follows assumes that EPICS base has
already been built.

2.2 Example IOC Application

This section explains how to create an example IOC application in a directory <top>, naming the application
myexampleApp and the ioc directory iocmyexample.

2.2.1 Check that EPICS_HOST_ARCH is defined

Execute the command:

echo $SEPICS_HOST_ARCH (Unix/Linux)
or

set EPICS_HOST_ARCH (Windows)

This should display your workstation architecture, for example 1inux-x86 or win32-x86. If you get an “Unde-
fined variable” error, you should set EPICS_HOST_ARCH to your host operating system followed by a dash and then
your host architecture, e.g. solaris-sparc. The perl script EpicsHostArch.pl in the base/startup directory
has been provided to help set EPICS_HOST_ARCH.

13



14 CHAPTER 2. GETTING STARTED

2.2.2 Create the example application

The following commands create an example application.

mkdir <top>

cd <top>

<base>/bin/<arch>/makeBaselpp.pl -t example myexample
<base>/bin/<arch>/makeBaselApp.pl —-i -t example myexample

Here, <arch> indicates the operating system architecture of your computer. For example, solaris—sparc. The
last command will ask you to enter an architecture for the IOC. It provides a list of architectures for which base has
been built.

The full path name to <base> (an already built copy of EPICS base) must be given. Check with your EPICS system
administrator to see what the path to your <base> is. For example:

/home/phoebus/MRK/epics/base/bin/linux—-x86/makeBaseApp.pl

Windows Users Note: Perl scripts must be invoked with the command perl <scriptname> on Windows. Perl
script names are case sensitive. For example to create an application on Windows:

perl C:\epics\base\bin\win32-x86\makeBaseApp.pl -t example myexample

2.2.3 Inspect files

Spend some time looking at the files that appear under <t op>. Do this before building. This allows you to see typical
files which are needed to build an application without seeing the files generated by make.

2.2.4 Sequencer Example
The sequencer is now supported as an unbundled product. The example includes an example state notation program,
sncExample.stt. As created by makeBaseApp the example is not built or executed.

Before sncExample.stt can be compiled, the sequencer module must have been built using the same version of
base that the example uses.

To build sncExample edit the following files:
e configure/RELEASE — Set SNCSEQ to the location of the sequencer.
e iocBoot/iocmyexample/st.cmd — Remove the comment character # from this line:
#seq sncExample, "user=<user>"

The Makefile contains commands for building the sncExample code both as a component of the example IOC appli-
cation and as a standalone program called sncProgram, an executable that connects through Channel Access to a
separate IOC database.

2.2.5 Build

In directory <t op> execute the command
make

NOTE: On systems where GNU make is not the default another command is required, e.g. gnumake, gmake, etc.
See you EPICS system administrator.



2.3. CHANNEL ACCESS HOST EXAMPLE 15

2.2.6 Inspect files

This time you will see the files generated by make as well as the original files.

2.2.7 Run the ioc example

The example can be run on vxWorks, RTEMS, or on a supported host.
e On a host, e.g. Linux or Solaris

cd <top>/iocBoot/iocmyexample
../../bin/linux-x86/myexample st.cmd

o vxWorks/RTERMS - Set your boot parameters as described at the end of this chapter and then boot the ioc.

After the ioc is started try some of the shell commands (e.g. dbl or dopr <recordname>) described in the chapter
“IOC Test Facilities”. In particular run db1 to get a list of the records.

The iocsh command interpreter used on non-vxWorks IOCs provides a help facility. Just type:
help

or
help <cmd>

where <cmd> is one of the commands displayed by help. The help command accepts wildcards, so
help dbx*

will provide information on all commands beginning with the characters db. On vxWorks the help facility is available
by first typing:

iocsh

2.3 Channel Access Host Example

An example host example can be generated by:

cd <mytop>
<base>/bin/<arch>/makeBaselpp.pl -t caClient caClient
make

(or gnumake, as required by your operating system)
Two channel access examples are provided:

caExample
This example program expects a pvname argument, connects and reads the current value for the pv, displays the
result and terminates. To run this example just type.

<mytop>/bin/<hostarch>/caExample <pvname> where
e <mytop> is the full path name to your application top directory.
e <hostarch> is your host architecture.

e <pvname> is one of the record names displayed by the db1 ioc shell command.



16 CHAPTER 2. GETTING STARTED

caMonitor
This example program expects a filename argument which contains a list of pvnames, each appearing on a
separate line. It connects to each pv and issues monitor requests. It displays messages for all channel access
events, connection events, etc.

2.4 iocsh

Because the vxWorks shell is only available on vxWorks, EPICS base provides iocsh. In the main program it can be
invoked as follows:

iocsh ("filename")
or
iocsh (0)

If the argument is a filename, the commands in the file are executed and iocsh returns. If the argument is O then iocsh
goes into interactive mode, i.e. it prompts for and executes commands until an exit command is issued.

This shell is described in more detail in Chapter 18, “IOC Shell” on page 249 FIXPAGEEREF.

On vxWorks iocsh is not automatically started. It can be started by just giving the following command to the vxWorks
shell.

iocsh
To get back to the vxWorks shell just say

exit

2.5 Building IOC components

Detailed build rules are given in chapter “Epics Build Facility”. This section describes methods for building most com-
ponents needed for IOC applications. It uses excerpts from the myexampleApp/src/Makefile thatis generated
by makeBaseApp.

The following two types of applications can be built:
e Support applications

These are applications meant for use by ioc applications. The rules described here install things into one of the
following directories that are created just below <top>:

include
C include files are installed here. Either header files supplied by the application or header files generated
from xxxRecord.dbd or xxxMenu . dbd files.

dbd
Each file contains some combination of include, recordtype, device,driver, and registrar
database definition commands. The following are installed:

e xxxRecord.dbd and xxxMenu . dbd files
e An arbitrary xxx . dbd file
e ioc applications install a file yyy . dbd generated from file yyyInclude . dbd.

db
Files containing record instance definitions.



2.5. BUILDING IOC COMPONENTS 17

lib/<arch>
All source modules are compiled and placed in shared or static library (win32 dll)

e 10C applications

These are applications loaded into actual IOCs.

2.5.1 Binding to IOC components

Because many IOC components are bound only during ioc initialization, some method of linking to the appropriate
shared and/or static libraries must be provided. The method used for IOCs is to generate, from an xxxInclude . dbd
file, a C++ program that contains references to the appropriate library modules. The following database definitions
keywords are used for this purpose:

recordtype
device
driver
function
variable
registrar

The method also requires that IOC components contain an appropriate epicsExport statement. All components must
contain the statement:

#include <epicsExport.h>

Any component that defines any exported functions must also contain:
#include <registryFunction.h>

Each record support module must contain a statement like:
epicsExportAddress (rset, xxxRSET) ;

Each device support module must contain a statement like:
epicsExportAddress (dset, devXxxSoft) ;

Each driver support module must contain a statement like:
epicsExportAddress (drvet, drvXxx) ;

Functions are registered using an epicsRegisterFunction macro in the C source file containing the function,
along with a function statement in the application database description file. The makeBaseApp example thus
contains the following statements to register a pair of functions for use with a subroutine record:

epicsRegisterFunction (mySubInit);
epicsRegisterFunction (mySubProcess) ;

The database definition keyword variable forces a reference to an integer or double variable, e.g. debugging
variables. The xxxInclude.dbd file can contain definitions like:

variable (asCaDebug, int)
variable (myDefaultTimeout, double)

The code that defines the variables must include code like:

int asCaDebug = 0;
epicsExportAddress (int, asCaDebug) ;

The keyword registrar signifies that the epics component supplies a named registrar function that has the proto-
type:



18 CHAPTER 2. GETTING STARTED

typedef void (*xREGISTRAR) (void);

This function normally registers things, as described in Chapter 21, “Registry” on page 317. The makeBaseApp
example provides a sample iocsh command which is registered with the following registrar function:

static void helloRegister (void) {
iocshRegister (&helloFuncDef, helloCallFunc);

}

epicsExportRegistrar (helloRegister);

2.5.2 Makefile rules
2.5.2.1 Building a support application.

# xxxRecord.h will be created from xxxRecord.dbd
DBDINC += xxxRecord
DBD += myexampleSupport.dbd

LIBRARY_IOC += myexampleSupport

myexampleSupport_SRCS += xxxRecord.c
myexampleSupport_SRCS += devXxxSoft.c
myexampleSupport_SRCS += dbSubExample.c
myexampleSupport_LIBS += $(EPICS_BASE_TIOC_LIBS)

The DBDINC rule looks for a file xxxRecord.dbd. From this file a file xxxRecord.h is created and installed
into <top>/include

The DBD rule finds myexampleSupport . dbd in the source directory and installs it into <t op>/dbd
The LIBRARY_ IOC statement states that a shared/static library should be created and installed into <top>/1ib/<arch>.
The myexampleSupport_SRCS statements name all the source files that are compiled and put into the library.

The above statements are all that is needed for building many support applications.

2.5.2.2 Building the IOC application

The following statements build the IOC application:

PROD_IOC = myexample
DBD += myexample.dbd

# myexample.dbd will be made up from these files:
myexample_DBD += base.dbd

myexample_DBD += xxxSupport.dbd

myexample_DBD += dbSubExample.dbd

# <name>_registerRecordDeviceDriver.cpp will be created from <name>.dbd
myexample_SRCS += myexample_registerRecordDeviceDriver.cpp
myexample_SRCS_DEFAULT += myexampleMain.cpp

myexample_SRCS_vxWorks += -nil-

# Add locally compiled object code



2.6. MAKEBASEAPP.PL 19

mnyexample_SRCS += dbSubExample.c

#The following adds support from base/src/vxWorks
myexample_OBJS_vxWorks += $(EPICS_BASE_BIN) /vxComLibrary

myexample_LIBS += myexampleSupport
myexample_LIBS += $(EPICS_BASE_TIOC_LIBS)
PROD_IOC sets the name of the ioc application, here called myexample.

The DBD definition myexample . dbd will cause build rules to create the database definition include file
myexampleInclude.dbd from files in the myexample_DBD definition. For each filename in that definition,
the created myexampleInclude.dbd will contain an include statement for that filename. In this case the created
myexampleInclude.dbd file will contain the following lines.

include "base.dbd"
include "xxxSupport.dbd"
include "dbSubExample.dbd"

When the DBD build rules find the created file myexampleInclude.dbd, the rules then call dbExpand which
reads myexampleInclude.dbd to generate file myexample . dbd, and install it into <t op>/dbd.

An arbitrary number of myexample_ SRCS statements can be given. Names of the form
<name>_registerRecordDeviceDriver.cpp, are special; when they are seen the perl script
registerRecordDeviceDriver.pl is executed and given <name>.dbd as input. This script generates the
<name>_registerRecordDeviceDriver. cpp file automatically.

2.6 makeBaseApp.pl

makeBaseApp.pl is a perl script that creates application areas. It can create the following:
e <top>/Makefile
e <top>/configure — This directory contains the files needed by the EPICS build system.
e <top>/xxxApp — A set of directories and associated files for a major sub-module.
e <top>/iocBoot — A subdirectory and associated files.
e <top>/iocBoot/iocxxx — A subdirectory and files for a single ioc.

makeBaseApp . pl creates directories and then copies template files into the newly created directories while expand-
ing macros in the template files. EPICS base provides two sets of template files: simple and example. These are meant
for simple applications. Each site, however, can create its own set of template files which may provide additional
functionality. This section describes the functionality of makeBaseApp itself, the next section provides details about
the simple and example templates.

2.6.1 Usage

makeBaseApp has four possible forms of command line:
<base>/bin/<arch>/makeBaselApp.pl -h

Provides help.
<base>/bin/<arch>/makeBaselpp.pl -1 [options]

List the application templates available. This invocation does not alter the current directory.



20 CHAPTER 2. GETTING STARTED

<base>/bin/<arch>/makeBaselApp.pl [-t type] [options] app

Create application directories.

<base>/bin/<arch>/makeBaseApp.pl -1 -t type [options] ioc
Create ioc boot directories.
Options for all command forms:

-b base

Provides the full path to EPICS base. If not specified, the value is taken from the EPICS_BASE entry in
config/RELEASE. If the config directory does not exist, the path is taken from the command-line that was used

to invoke makeBaseApp
-T template

Set the template top directory (where the application templates are). If not specified, the template path is taken
from the TEMPLATE_TOP entry in config/RELEASE. If the config directory does not exist the path is taken
from the environment variable EPICS _MBA_TEMPLATE_TOP, or if this is not set the templates from EPICS
base are used.

-d
Verbose output (useful for debugging)
Arguments unique to makeBaseApp.pl [-t type] [options] app

app
One or more application names (the created directories will have “App”” appended to this name)

-t type

Set the template type (use the —1 invocation to get a list of valid types). If this option is not used, type is taken
from the environment variable EPICS_MBA_DEF_APP_TYPE, or if that is not set the values “default” and then
“example” are tried.

Arguments unique to makeBaseApp.pl —-i [options] ioc
ioc
One or more IOC names (the created directories will have “ioc” prepended to this name).

—-a arch
Set the IOC architecture (e.g. vxWorks-68040). If —a arch is not specified, you will be prompted.

2.6.2 Environment Variables:

EPICS_MBA_DEF_APP_TYPE
Application type you want to use as default

EPICS_MBA_TEMPLATE_TOP
Template top directory

2.6.3 Description

To create a new <t op> issue the commands:

mkdir <top>

cd <top>

<base>/bin/<arch>/makeBaselApp.pl -t <type> <app>
<base>/bin/<arch>/makeBaselApp.pl -1 -t <type> <ioc>

makeBaseApp does the following:



2.6. MAKEBASEAPP.PL 21

EPICS_BASE is located by checking the following in order:
e If the —b option is specified its value is used.
e Ifa<top>/configure/RELEASE file exists and defines a value for EPICS_BASE it is used.

o [tis obtained from the invocation of makeBaseApp. For this to work, the full path name to the makeBaseApp.pl
script in the EPICS base release you are using must be given.

e TEMPLATE_TOP is located in a similar fashion:
e If the —T option is specified its value is used.
e Ifa<top>/configure/RELEASE file exists and defines a value for TEMPLATE_TOP it is used.
e If EPICS_MBA_TEMPLATE_TOP is defined its value is used.
e Itis setequal to <epics_base>/templates/makeBaselApp/top
e If -1 is specified the list of application types is listed and makeBaseApp terminates.
e If -1 is specified and —a is not then the user is prompted for the IOC architecture.
e The application type is determined by checking the following in order:
e If —t is specified it is used.
e [fEPICS_MBA_DEF_ APP_TYPE is defined its value is used.
e If atemplate defaultApp exists, the application type is set equal to default.
e If a template exampleApp exists, the application type is set equal to example.
o If the application type is not found in TEMPLATE_ TOP, makeBaseApp issues an error and terminates.
e If Makefile does not exist, it is created.
e If directory configure does not exist, it is created and populated with all the configure files.
e If -1 is specified:

e If directory iocBoot does not exist, it is created and the files from the template boot directory are copied
into it.

e For each <ioc> specified on the command line a directory iocBoot/ioc<ioc> is created and popu-
lated with the files from the template (with ReplaceLine () tag replacement, see below).

e If —i is NOT specified:

e For each <app> specified on the command line a directory <app>App is created and populated with the
directory tree from the template (with ReplaceLine () tag replacement, see below).

2.6.4 Tag Replacement within a Template

When copying certain files from the template to the new application structure, makeBase App replaces some predefined
tags in the name or text of the files concerned with values that are known at the time. An application template can
extend this functionality as follows:

e Two perl subroutines are defined within makeBaseApp:

ReplaceFilename
This substitutes for the following in names of any file taken from the templates.

_APPNAME__
_APPTYPE__



22 CHAPTER 2. GETTING STARTED

Replaceline
This substitutes for the following in each line of each file taken from the templates:

_USER_
_EPICS_BASE_
_ARCH_
_APPNAME_
_APPTYPE_
_TEMPLATE_TOP_
_IoC_

o If the application type directory has a file named Replace.pl, it can:
e Replace one or both of the above subroutines with its own versions.
e Addasubroutine ReplaceFilenameHook ($file) whichis called at the end of ReplaceFilename.
e Add a subroutine ReplaceLineHook ($1ine) which is called at the end of ReplaceLine.

e Include other code which is run after the command line options are interpreted.

2.6.5 makeBaseApp templetes provided with base
2.6.5.1 support

This creates files appropriate for building a support application.

2.6.5.2 ioc

Without the —1 option, this creates files appropriate for building an ioc application. With the —1 option it creates an
ioc boot directory.

2.6.5.3 example

Without the -1 option it creates files for running an example. Both a support and an ioc application are built. With the
—1 option it creates an ioc boot directory that can be used to run the example.

2.6.5.4 caClient

This builds two Channel Access clients.

2.6.5.5 caServer

This builds an example Portable Access Server.

2.7 vxWorks boot parameters

The vxWorks boot parameters are set via the console serial port on your IOC. Life is much easier if you can connect
the console to a terminal window on your workstation. On Linux the ‘screen’ program lets you communicate through
a local serial port; run screen /dev/ttySO0 if the IOC is connected to ttySO.

The vxWorks boot parameters look something like the following:



2.8. RTEMS BOOT PROCEDURE 23

boot device T XXX

processor number : 0

host name TOXXX

file name : <full path to board support>/vxWorks
inet on ethernet (e) I XXX . XXX .XXX.XXX:<netmask>

host inet (h) ! OXXX . XXX . XXX . XXX

user (u) T XXX

ftp password (pw) TOXXX

flags (f) : 0x0

target name (tn) : <hostname for this inet address>
startup script (s) : <top>/iocBoot/iocmyexample/st.cmd

The actual values for each field are site and IOC dependent. Two fields that you can change at will are the vxWorks
boot image and the location of the startup script.

Note that the full path name for the correct board support boot image must be specified. If bootp is used the same
information will need to be placed in the bootp host’s configuration database instead.

When your boot parameters are set properly, just press the reset button on your IOC, or use the @ command to
commence booting. You will find it VERY convenient to have the console port of the IOC attached to a scrolling
window on your workstation.

2.8 RTEMS boot procedure

RTEMS uses the vendor-supplied bootstrap mechanism so the method for booting an IOC depends upon the hardware
in use.

2.8.1 Booting from a BOOTP/DHCP/TFTP server

Many boards can use BOOTP/DHCP to read their network configuration and then use TFTP to read the applicaion
program. RTEMS can then use TFTP or NFS to read startup scripts and configuration files. If you are using TFTP
to read the startup scripts and configuration files you must install the EPICS application files on your TFTP server as
follows:

e Copy all db/xxx files to <t ftpbase>/epics/<target_hostname\>/db/xxx.
e Copy all dbd/xxx files to <t ftpbase>/epics/<target_hostname>/dbd/xxx.
e Copy the st .cmd script to <t ftpbase>/epics/<target_hostname>/st.cmd.

Use DHCP site-specific option 129 to specify the path to the IOC startup script.

2.8.2 Motorola PPCBUG boot parameters

Motorola single-board computers which employ PPCBUG should have their ‘NIOT’ parameters set up like:

Controller LUN =00

Device LUN =00

Node Control Memory Address =FFE10000

Client IP Address =‘Dotted-decimal’ IP address of IOC

Server IP Address =‘Dotted-decimal’ IP address of TFTP/NFS server

Subnet IP Address Mask =‘Dotted-decimal’ IP address of subnet mask (255.255.255.0 for class C subnet)
Broadcast IP Address =‘Dotted-decimal’ IP address of subnet broadcast address

Gateway IP Address =‘Dotted-decimal’ IP address of network gateway (0.0.0.0 if none)



24 CHAPTER 2. GETTING STARTED

Boot File Name =Path to application bootable image (..../bin/RTEMS-mvme2100/test.boot)
Argument File Name =Path to application startup script (..../iocBoot/ioctest/st.cmd)

Boot File Load Address =001F0000 (actual value depends on BSP)

Boot File Execution Address =001F0000 (actual value depends on BSP)

Boot File Execution Delay =00000000

Boot File Length =00000000

Boot File Byte Offset =00000000

BOOTP/RARP Request Retry =00

TFTP/ARP Request Retry =00

Trace Character Buffer Address =00000000

2.8.3 Motorola MOTLOAD boot parameters

Motrola single-board computers which employ MOTLOAD should have their network ‘Global Environment Variable’
parameters set up like:

mot—/dev/enet0-cipa=‘Dotted-decimal’ IP address of IOC
mot—/dev/enet0-sipa="‘Dotted-decimal’ IP address of TFTP/NFS server

mot—-/dev/enet 0-snma=‘Dotted-decimal’ IP address of subnet mask (255.255.255.0 for class C subnet)
mot—-/dev/enet0-gipa=‘Dotted-decimal’ IP address of network gateway (omit if none)
mot—-/dev/enet0-£file=Path to application bootable image (..../bin/RTEMS-mvme5500/test.boot)
rtems-client-name=I0C name (mot-/dev/enetO-cipa will be used if this parameter is missing)
rtems—-dns-server="Dotted-decimal’ IP address of domain name server (omit if none)
rtems—-dns-domainname=Domain name (if this parameter is omitted the compiled-in value will be used)
epics—-script=Path to application startup script (..../iocBoot/ioctest/st.cmd)

The mot-script-boot parameter should be set up like:

tftpGet —-a4000000 —-cxxx —-sxxXX -mxXxXx —-gxxx —-d/dev/enetO
-f..../bin/RTEMS-mvme5500/test .boot

netShut

go —a4000000

where the —c, —s, —m and —g values should match the cipa, sipa, snma and gipa values, respectively and the — £ value
should match the file value.

2.8.4 RTEMS NFS access

For IOCs which use NFS for remote file access the EPICS initialization code uses the startup script pathname to
determine the parameters for the initial NFS mount. If the startup script pathname begins with a ‘/” the first component
of the pathname is used as both the server path and the local mount point. If the startup script pathname does not begin
with a ¢/’ the first component of the pathname is used as the local mount point and the server path is “/t ft pboot /”
followed by the first component of the pathname. This allows the NFS client used for EPICS file access and the TFTP
client used for bootstrapping the application to have a similar view of the remote filesystem.

2.8.5 RTEMS ‘Cexp’

The RTEMS ‘Cexp’ add-on package provides the ability to load object modules at application run-time. If your
RTEMS build includes this package you can load RTEMS IOC applications in the same fashion as vxWorks IOC
applications.



Chapter 3

EPICS Overview

3.1 Whatis EPICS?

The Experimental Physics and Industrial Control System (EPICS) consists of a set of software components and tools
that Application Developers can use to create control systems. The basic components are:

e OPI: Operator Interface. This is a workstation which can run various EPICS tools.

e I0C: Input/Output Controller. Any platform that can support EPICS run time databases together with the other
software components described in the manual. One example is a workstation. Another example is a VME/VXI
based system using vxWorks or RTEMS as the realtime operating system.

e LAN: Local Area Network. This is the communication network which allows the IOCs and OPIs to communi-
cate. EPICS provides a software component, Channel Access, which provides network transparent communica-
tion between a Channel Access client and an arbitrary number of Channel Access servers.

A control system implemented via EPICS has the following physical structure.

OPI e OoPI -- - | oPI

LAN

I0C C e I0C

The rest of this chapter gives a brief description of EPICS:

e Basic Attributes: A few basic attributes of EPICS.

Platforms: The vendor supplied Hardware and Software platforms EPICS supports.

I0C Software: EPICS supplied IOC software components.

Channel Access: EPICS software that supports network independent access to IOC databases.

OPI Tools: EPICS supplied OPI based tools.

EPICS Core: A list of the EPICS core software, i.e. the software components without which EPICS will not
work.

25



26

3.2

CHAPTER 3. EPICS OVERVIEW

Basic Attributes

The basic attributes of EPICS are:

3.3

Tool Based: EPICS provides a number of tools for creating a control system. This minimizes the need for
custom coding and helps ensure uniform operator interfaces.

Distributed: An arbitrary number of IOCs and OPIs can be supported. As long as the network is not saturated,
no single bottle neck is present. A distributed system scales nicely. If a single IOC becomes saturated, its
functions can be spread over several IOCs. Rather than running all applications on a single host, the applications
can be spread over many OPIs.

Event Driven: The EPICS software components are all designed to be event driven to the maximum extent
possible. For example, rather than having to poll IOCs for changes, a Channel Access client can request that
it be notified when a change occurs. This design leads to efficient use of resources, as well as, quick response
times.

High Performance: A SPARC based workstation can handle several thousand screen updates a second with
each update resulting from a Channel Access event. A 68040 IOC can process more than 6,000 records per
second, including generation of Channel Access events.

IOC Software Components

An IOC contains the following EPICS supplied software components.

Ethernet
Channel Sequencer
Access
Monitors

Database —
Scanners Access IOC Database
Driver or Record Support

Device

Interrupt
Routines

Device Support

Device
Drivers

VME

IOC Database: The memory resident database plus associated data structures.

Database Access: Database access routines. With the exception of record and device support, all access to the
database is via the database access routines.

Scanners: The mechanism for deciding when records should be processed.
Record Support: Each record type has an associated set of record support routines.

Device Support: Each record type can have one or more sets of device support routines.



3.3. 10C SOFTWARE COMPONENTS 27

e Device Drivers: Device drivers access external devices. A driver may have an associated driver interrupt routine.

e Channel Access: The interface between the external world and the IOC. It provides a network independent
interface to database access.

e Monitors: Database monitors are invoked when database field values change.
e Sequencer: A finite state machine.

Let’s briefly describe the major components of the IOC and how they interact.

3.3.1 I0OC Database

The heart of each IOC is a memory resident database together with various memory resident structures describing
the contents of the database. EPICS supports a large and extensible set of record types, e.g. ai (Analog Input), ao
(Analog Output), etc.

Each record type has a fixed set of fields. Some fields are common to all record types and others are specific to
particular record types. Every record has a record name and every field has a field name. The first field of every
database record holds the record name, which must be unique across all IOCs that are attached to the same TCP/IP
subnet.

Data structures are provided so that the database can be accessed efficiently. Most software components, because they
access the database via database access routines, do not need to be aware of these structures.

3.3.2 Database Access

With the exception of record and device support, all access to the database is via the channel or database access
routines. See Chapter 15, “Runtime Database Access” on page213 FIXPAGERETF for details.

3.3.3 Database Scanning
Database scanning is the mechanism for deciding when to process a record. Five types of scanning are possible:
Periodic, Event, I/O Event, Passive and Scan Once.

e Periodic: A request can be made to process a record periodically. A number of time intervals are supported.

e Event: Event scanning is based on the posting of an event by any IOC software component. The actual subrou-
tine call is:
post_event (event_num)

e 1/0 Event: The I/O event scanning system processes records based on external interrupts. An IOC device driver
interrupt routine must be available to accept the external interrupts.

e Passive: Passive records are processed as a result of linked records being processed or as a result of external
changes such as Channel Access puts.

e Scan Once: In order to provide for caching puts, The scanning system provides a routine scanOnce which
arranges for a record to be processed one time.

3.3.4 Record Support, Device Support and Device Drivers

Database access needs no record-type specific knowledge, because each record-type has its associated record support
module. Therefore, database access can support any number and type of records. Similarly, record support contains
no device specific knowledge, giving each record type the ability to have any number of independent device support



28 CHAPTER 3. EPICS OVERVIEW
modules. If the method of accessing the piece of hardware is more complicated than what can be handled by device
support, then a device driver can be developed.

Record types not associated with hardware do not have device support or device drivers.

The 10C software is designed so that the database access layer knows nothing about the record support layer other
than how to call it. The record support layer in turn knows nothing about its device support layer other than how to
call it. Similarly the only thing a device support layer knows about its associated driver is how to call it. This design
allows a particular installation and even a particular IOC within an installation to choose a unique set of record types,
device types, and drivers. The remainder of the IOC system software is unaffected.

Because an Application Developer can develop record support, device support, and device drivers, these topics are
discussed in greater detail in later chapters.

Every record support module must provide a record processing routine to be called by the database scanners. Record
processing consists of some combination of the following functions (particular records types may not need all func-
tions):

e Input: Read inputs. Inputs can be obtained, via device support routines, from hardware, from other database
records via database links, or from other IOCs via Channel Access links.

e Conversion: Conversion of raw input to engineering units or engineering units to raw output values.

e Output: Write outputs. Output can be directed, via device support routines, to hardware, to other database
records via database links, or to other IOCs via Channel Access links.

e Raise Alarms: Check for and raise alarms.
e Monitor: Trigger monitors related to Channel Access callbacks.

e Link: Trigger processing of linked records.

3.3.5 Channel Access

Channel Access is discussed in the next section.

3.3.6 Database Monitors

Database monitors provide a callback mechanism for database value changes. This allows the caller to be notified
when database values change without constantly polling the database. A mask can be set to specify value changes,
alarm changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software should use the database monitors.
The monitor routines will not be described because they are of interest only to Channel Access.

3.4 Channel Access

Channel Access provides network transparent access to IOC databases. It is based on a client/ server model. Each IOC
provides a Channel Access server which is willing to establish communication with an arbitrary number of clients.
Channel Access client services are available on both OPIs and IOCs. A client can communicate with an arbitrary
number of servers.



3.4. CHANNEL ACCESS 29

3.4.1 Client Services

The basic Channel Access client services are:
e Search: Locate the IOCs containing selected process variables and establish communication with each one.
e Get: Get value plus additional optional information for a selected set of process variables.
e Put: Change the values of selected process variables.

e Add Event: Add a change of state callback. This is a request to have the server send information only when
the associated process variable changes state. Any combination of the following state changes can be requested:
change of value, change of alarm status and/or severity, and change of archival value. Many record types provide
hysteresis factors for value changes.

In addition to requesting process variable values, any combination of the following additional information may be
requested:

e Status: Alarm status and severity.

Units: Engineering units for this process variable.

Precision: Precision with which to display floating point numbers.

Time: Time when the record was last processed.

Enumerated: A set of ASCII strings defining the meaning of enumerated values.

Graphics: High and low limits for producing graphs.

Control: High and low control limits.
e Alarm: The alarm HIHI, HIGH, LOW, and LOLO values for the process variable.

It should be noted that Channel Access does not provide access to database records as records. This is a deliberate
design decision. This allows new record types to be added without impacting any software that accesses the database
via Channel Access, and it allows a Channel Access client to communicate with multiple IOCs having differing sets
of record types.

3.4.2 Search Server

Channel Access provides an IOC resident server which waits for Channel Access search messages. These are generated
when a Channel Access client (for example when an Operator Interface task starts) searches for the IOCs containing
process variables the client uses. This server accepts all search messages, checks to see if any of the process variables
are located in this IOC, and, if any are found, replies to the sender with and “I have it” message.

3.4.3 Connection Request Server

Once the process variables have been located, the Channel Access client issues connection requests for each IOC con-
taining process variables the client uses. The connection request server, in the IOC, accepts the request and establishes
a connection to the client. Each connection is managed by two separate tasks: ca_get and ca_put. The ca_get
and ca_put requests map to dbGetField and dbPutField database access requests. ca_add_event requests
result in database monitors being established. Database access and/or record support routines trigger the monitors via
acall to db_post_event.



30 CHAPTER 3. EPICS OVERVIEW

3.4.4 Connection Management

Each IOC provides a connection management service. When a Channel Access server fails (e.g. its IOC crashes) the
client is notified and when a client fails (e.g. its task crashes) the server is notified. When a client fails, the server
breaks the connection. When a server crashes, the client automatically re-establishes communication when the server
restarts.

3.5 OPI Tools

EPICS provides a number of OPI based tools. These can be divided into two groups based on whether or not they use
Channel Access. Channel Access tools are real time tools, i.e. they are used to monitor and control IOCs.

3.5.1 Examples of Channel Access Tools

A large number of Channel Access tools have been developed. The following are some representative examples.
e CSS: Control System Studio, an Eclipse RCP application with many available plug-ins.
e EDM: Extensible Display Manager.
e MEDM: Motif Editor and Display Manager.

StripTool: A general-purpose stripchart program.

ALH: Alarm Handler. General purpose alarm handler driven by an alarm configuration file.

Sequencer: Runs in an IOC and emulates a finite state machine.

Probe: Allows the user to monitor and/or change a single process variable specified at run time.

3.5.2 Examples of other Tools

e VDCT: A Java based database configuration tool which is quickly becoming the recommended database con-
figuration tool.

e SNC: State Notation Compiler. It generates a C program that represents the states for the IOC Sequencer tool.

3.6 EPICS Core Software

EPICS consists of a set of core software and a set of optional components. The core software, i.e. the components of
EPICS without which EPICS would not function, are:

e Channel Access - Client and Server software

I0C Database

e Scanners

Monitors

e Database Definition Tools

Source/Release



3.6. EPICS CORE SOFTWARE 31

All other software components are optional. Of course, most applications will need equivalent functionality to MEDM
(or EDD/DM). Likewise an application developer would not start from scratch developing record and device support.
Most OPI tools do not, however, have to be used. Likewise any given record support module, device support module,
or driver could be deleted from a particular IOC and EPICS will still function.



32

CHAPTER 3. EPICS OVERVIEW



Chapter 4

Build Facility

Janet Anderson is the author of this chapter.

4.1 Overview

This chapter describes the EPICS build facility including directory structure, environment and system requirements,
configuration files, Makefiles, and related build tools.

4.1.1 <top> Directory structure

EPICS software can be divided into multiple <t op> areas. Examples of <t op> areas are EPICS base itself, EPICS
extensions, and simple or complicated IOC applications. Each <t op> may be maintained separately. Different <t op>
areas can be on different releases of external software such as EPICS base releases.

A <top> directory has the following directory structure:

<top>/
Makefile
configure/
dirl/
dir2/

where configure is a directory containing build configuration files and a Makefile, where dirl, dir2, ..
are user created subdirectory trees with Makefiles and source files to be built. Because the build rules allow make
commands like “make install.vxWorks-68040”, subdirectory names within a <t op> directory structure may
not contain a period ”.” character.

4.1.2 Install Directories

Files installed during the build are installed into subdirectories of an installation directory which defaults to $ (TOP),
the <t op> directory. For base, extensions, and IOC applications, the default value can be changed in the
configure/CONFIG_SITE file. The installation directory for the EPICS components is controlled by the defini-
tion of INSTALL_LOCATION

The following subdirectories may exist in the installation directory. They are created by the build and contain the
installed build components.

33



34 CHAPTER 4. BUILD FACILITY

e dbd — Directory into which Database Definition files are installed.

e include — The directory into which C header files are installed. These header files may be generated from
menu and record type definitions.

e bin — This directory contains a subdirectory for each host architecture and for each target architecture. These
are the directories into which executables, binaries, etc. are installed.

e 1ib — This directory contains a subdirectory for each host architecture. These are the directories into which
libraries are installed.

e db — This is the directory into which database record instance, template, and substitution files are installed.
e html — This is the directory into which html documentation is installed.

e templates — This is the directory into which template files are installed.

e javalib — This is the directory into which java class files and jar files are installed.

e configure — The directory into which configure files are installed (if INSTALL_LOCATION does not equal
TOP).

e cfg - The directory into which user created configure files are installed

4.1.3 Elements of build system

The main ingredients of the build system are:
e A set of configuration files and tools provided in the EPICS base/configure directory

e A corresponding set of configuration files in the <t op>/configure directory of a non-base <t op> directory
structure to be built. The makeBaseApp.pl and makeBaseExt.pl scripts create these configuration files. Many of
these files just include a file of the same name from the base/configure directory.

e Makefiles in each directory of the <t op> directory structure to be built

e User created configuration files in build created $ (INSTALL_LOCATION) /cfg directories.

4.1.4 Features

The principal features of the build system are:
e Requires a single Makefile in each directory of a <t op> directory structure
e Supports both host os vendor’s native compiler and GNU compiler

e Supports building multiple types of software (libraries, executables, databases, java class files, etc.) stored in a
single directory tree.

e Supports building EPICS base, extensions, and IOC applications.

e Supports multiple host and target operating system + architecture combinations.

o Allows builds for all hosts and targets within a single <t op> source directory tree.

o Allows sharing of components such as special record/device/drivers across <t op> areas.

e gnumake is the only command used to build a <t op> area.



4.2. BUILD REQUIREMENTS 35

4.1.5 Multiple host and target systems

You can build on multiple host systems and for multiple cross target systems using a single EPICS directory structure.

The intermediate and binary files generated by the build will be created in separate O.* subdirectories and installed

into the appropriate separate host or target install directories. EPICS executables and scripts are installed into the

S (INSTALL_LOCATION) /bin/<arch> directories. Libraries are installed into $ (INSTALL_LOCATION) /lib/<arch>.
The default definition for $ (INSTALL_LOCATION) is $ (TOP) which is the root directory in the directory structure.
Architecture dependant created files (e.g. object files) are stored in O . <arch> source subdirectories, and architecture
independent created files are stored in O. Common source subdirectories. This allows objects for multiple cross target
architectures to be maintained at the same time.

To build EPICS base for a specific host/target combination you must have the proper host/target c/c++ cross compiler
and target header files, CROSS_COMPILER HOST_ARCHS must empty or include the host architecture in its list
value, the CROSS_COMPILER_TARGET_ARCHS variable must include the target to be cross-compiled, and the
base/configure/ os directory must have the appropriate configure files.

4.2 Build Requirements

4.2.1 Host Environment Variable

Only one environment variable, EPTICS_HOST_ARCH, is required to build EPICS <t op> areas. This variable should
be set to be your workstation’s operating system - architecture combination to use the os vendor’s c¢/c++ compiler for
native builds or set to the operating system - architecture - alternate compiler combination to use an alternate compiler
for native builds if an alternate compiler is supported on your system. The filenames of the CONFIG. x . Common files
in base/ configure/os show the currently supported EPICS_HOST_ARCH values. Examples are solaris-sparc,
solaris—-sparc—gnu, 1inux—-x86,win32-x86, and cygwin—-x86.

4.2.2 Software Prerequisites

Before you can build EPICS components your host system must have the following software installed:
e Perl version 5.8 or greater
e GNU make, version 3.81 or greater
e C++ compiler (host operating system vendor’s compiler or GNU compiler)

If you will be building EPICS components for vxWorks targets you will also need:

e Tornado II or vxWorks 6.x and one or more board support packages. Consult the vxWorks documentation for
details.

If you will be building EPICS components for RTEMS targets you will also need:
e RTEMS development tools and libraries required to run EPICS IOC applications.

4.2.3 Path requirements

You must have the perl executable in your path and you may need C and C++ compilers in your search path. Check
definitions of CC and CCC in base/configure/os/CONFIG.<host>.<host> or the definitions for GCC and
G++ if ANSI=GCC and CPLUSPLUS=GCC are specified in CONFIG_SITE. For building base you also must have
echo in your search path. You can override the default settings by defining PERL, CC and CCC, GCC and G++,
GNU_DIR ... in the appropriate file (usually configure/os/CONFIG_SITE.$EPICS_HOST_ARCH.Common)



36 CHAPTER 4. BUILD FACILITY
4.2.3.1 Unix path

For Unix host builds you also need touch, cpp, cp, rm, mv, and mkdir in your search path and /bin/chmod must exist.
On some Unix systems you may also need ar and ranlib in your path, and the ¢ compiler may require 1d in your path.

4.2.3.2 Win32 PATH

On WIN32 systems, building shared libraries is the default setting and you will need to add fullpathname to $ (INSTALL_LOCATION) /
to your path so the shared libraries, dlls, can be found during the build.. Building shared libraries is determined by

the value of the macro SHARED_LIBRARIES in CONFIG_SITE or os/CONFIG.Common.<host> (either YES

or NO).

4.2.4 Directory names

Because the build rules allow make commands like “make <dir>.<action>, <arch>”, subdirectory names
within a <t op> directory structure may not contain a period”.” character.

4.2.5 EPICS_HOST_ARCH environment variable

The startup directory in EPICS base contains a perl script, EpicsHostArch.pl, which can be used to define
EPICS_HOST_ARCH. This script can be invoked with a command line parameter defining the alternate compiler (e.g.
if invoking EpicsHostArch.pl yields solaris—-sparc, then invoking EpicsHostArch.pl gnu will yield
solaris—-sparc-gnu).

The startup directory also contains scripts to help users set the path and other environment variables.

4.3 Configuration Definitions

4.3.1 Site-specific EPICS Base Configuration
4.3.1.1 Site configuration

To configure EPICS base for your site, you may want to modify the default definitions in the following files:
configure/CONFIG_SITE Build choices. Specify target archs.

configure/CONFIG_SITE_ENV Environment variable defaults

4.3.1.2 Host configuration

To configure each host system for your site, you may override the default definitions in the configure/os directory
by adding a new file with override definitions. The new file should have the same name as the distribution file to be
overridden except CONFIG in the name is changed to CONFIG_SITE.

configure/os/CONFIG_SITE.<host>.<host> - Host build settings

configure/os/CONFIG_SITE.<host>.Common - Host build settings for all target systems



4.3. CONFIGURATION DEFINITIONS 37

4.3.1.3 Target configuration

To configure each target system, you may override the default definitions in the configure/os directory by adding
a new file with override definitions. The new file should have the same name as the distribution file to be overridden
except CONF IG in the name is replaced by CONFIG_SITE.

configure/os/CONFIG_SITE.Common.<target> - Target cross settings
configure/os/CONFIG_SITE.<host>.<target> - Host-target settings

configure/os/CONFIG_SITE.Common.vxWorksCommon - vxWorks full paths

4.3.1.4 R3.13 compatibility configuration

To configure EPICS base for building with R3.13 extensions and ioc applications, you must modify the default
definitions in the base/config/CONFIG_SITE* files to agree with site definitions you made in base/configure and
base/configure/os files. You must also modify the following tow macros in the base/configure/CONFIG_SITE file:

COMPAT_TOOLS_313 - Set to YES to build R3.13 extensions with this base.
COMPAT 313 - Set to YES to build R3.13 ioc applications and extensions with this base.

4.3.2 Directory definitions

The configure files contain definitions for locations in which to install various components. These are all relative to
INSTALL_LOCATION. The default value for INSTALIL_TLOCATIONIis $ (TOP),and $ (T_A) is the current build’s
target architecture. The default value for INSTALL_LOCATION can be overridden in the configure/CONFIG_SITE
file.

INSTALL_LOCATION_LIB

$ (INSTALL_LOCATION) /1ib

INSTALL_LOCATION_BIN = $(INSTALL_LOCATION) /bin

INSTALL_HOST_BIN = S$(INSTALL_LOCATION_BIN) /$ (EPICS_HOST_ARCH)
INSTALL_HOST_LIB = $(INSTALL_LOCATION_LIB)/$ (EPICS_HOST_ARCH)
INSTALL_INCLUDE = $(INSTALL_LOCATION) /include

INSTALL_DOC = $(INSTALL_LOCATION) /doc

INSTALL_HTML = S$(INSTALL_LOCATION) /html

INSTALL_TEMPLATES = $(INSTALL_LOCATION) /templates

INSTALL_DBD = $(INSTALL_LOCATION) /dbd

INSTALL_DB = $(INSTALL_LOCATION) /db

INSTALL_CONFIG = $(INSTALL_LOCATION) /configure
INSTALL_JAVA = S$(INSTALL_LOCATION) /javalib

INSTALL_LIB = $(INSTALL_LOCATION_LIB)/$(T_A)
INSTALL_SHRLIB = $(INSTALL_LOCATION_LIB)/S$(T_A)
INSTALL_TCLLIB = $(INSTALL_LOCATION_LIB)/S$(T_A)

INSTALL_BIN = $(INSTALL_LOCATION_BIN) /$ (T_A)

4.3.3 Extension and Application Specific Configuration

The base/configure directory contains files with the default build definitions and site specific build defini-
tions. The extensions/configure directory contains extension specific build definitions (e.g. location of
X11 and Motif libraries) and “include <filename>” lines for the base/configure files. Likewise, the



38 CHAPTER 4. BUILD FACILITY

<application>/configure directory contains application specific build definitions and includes for the appli-
cation source files. Build definitions such as

CROSS_COMPILER_TARGET_ARCHS can be overridden in an extension or application by placing an override def-
inition in the <top>/configure/CONFIG_SITE file.

4.3.4 RELEASE file

Every <top>/configure directory contains a RELEASE file. RELEASE contains a user specified list of other
<top> directory structures containing files needed by the current <t op>, and may also include other files to take
those definitions from elsewhere. The macros defined in the RELEASE file (or its includes) may reference other
defined macros, but cannot rely on environment variables to provide definitions.

When make is executed, macro definitions for include, bin, and library directories are automatically generated for
each external <top> definition given in the RELEASE file. Also generated are include statements for any existing
RULES_BUILD files, cfg/RULES* files, and cfg/CONFIG* files from each external <t op> listed in the RELEASE
file.

For example, if configure/RELEASE contains the definition
CAMAC = /home/epics/modules/bus/camac
then the generated macros will be:

CAMAC_HOST_BIN = /home/epics/modules/bus/camac/bin/$ (EPICS_HOST_ARCH)
CAMAC_HOST_LIB /home/epics/modules/bus/camac/1lib/$ (EPICS_HOST_ARCH
CAMAC_BIN = /home/epics/modules/bus/camac/bin/$ (T_A)

CAMAC_LIB = /home/epics/modules/bus/camac/lib/$ (T_A)

RELEASE_INCLUDES += -I/home/epics/modules/bus/camac/include/os
RELEASE_INCLUDES += -I/home/epics/modules/bus/camac/include
RELEASE_DBDFLAGS += —-I /home/epics/modules/bus/camac/dbd
RELEASE_DBFLAGS += —-I/home/epics/modules/bus/camac/db
RELEASE_PERL_MODULE_DIRS += /home/epics/modules/bus/camac/lib/perl

RELEASE _DBDFLAGS will appear on the command lines for the dbToRecordTypeH, mkmf.pl, and dbExpand tools,
and RELEASE_INCLUDES will appear on compiler command lines. CAMAC_LIB and CAMAC_BIN can be used in
a Makefile to define the location of needed scripts, executables, object files, libraries or other files.

Definitions in configure/RELEASE can be overridden for a specific host and target architectures by providing the
appropriate file or files containing overriding definitions.

configure/RELEASE.<epics_host_arch>.Common
configure/RELEASE.Common.<targetarch>
configure/RELEASE.<epics_host_arch>.<targetarch>

For <t op> directory structures created by makeBaseApp.pl, an EPICS base perl script, convertRelease.pl can perform
consistency checks for the external <t op> definitions in the RELEASE file and its includes as part of the <top>
level build. Consistancy checks are controlled by value of CHECK_RELEASE which is defined in <t op>/configure/
CONFIG_SITE. CHECK_RELEASE can be set to YES, NO or WARN, and if YES (the default value), consistency
checks will be performed. If CHECK_RELEASE is set to WARN the build will continue even if conflicts are found.

4.3.5 Modifying configure/RELEASE* files

You should always do a gnumake clean uninstall in the <top> directory BEFORE adding, changing, or
removing any definitions in the configure/RELEASE* files and then a gnumake at the top level AFTER making the
changes.



4.3. CONFIGURATION DEFINITIONS 39
The file <top>/configure/RELEASE contains definitions for components obtained from outside <t op>. If you
want to link to a new release of anything defined in the file do the following:

cd <top>
gnumake clean uninstall
edit configure/RELEASE

change the relevant line(s) to point to the new release
gnumake

All definitions in <top>/configure/RELEASE must result in complete path definitions, i.e. relative path names
are not permitted. If your site could have multiple releases of base and other support <t op> components installed at
once, these path definitions should contain a release number as one of the components. However as the RELEASE file
is read by gnumake, it is permissible to use macro substitutions to define these pathnames, for example:

SUPPORT = /usr/local/iocapps/R3.14.9
EPICS_BASE = $(SUPPORT) /base/3-14-9-asdl

4.3.6 OS Class specific definitions
Definitions in a Makefile will apply to the host system (the platform on which make is executed) and each system
defined by CROSS_COMPILER_TARGET_ARCHS.

It is possible to limit the architectures for which a particular definition is used. Most Makefile definition names can
be specified with an appended underscore “_" followed by an osclass name. If an _<osclass> is not specified,
then the definition applies to the host and all CROSS_COMPILER_TARGET_ARCHS systems. If an _<osclass> is
specified, then the definition applies only to systems with the specified os class. A Makefile definition can also have an
appended _ DEFAULT specification. If _DEFAULT is appended, then the Makefile definition will apply to all systems
that do not have an _<osclass> specification for that definition. If a _DEFAULT definition exists but should not
apply to a particular system OS Class, the value “~nil-" should be specified in the relevant Makefile definition.

Each system has an OS_CLASS definition in its configure/os/CONFIG.Common.<arch> file. A few exam-
ples are:

For vxWorks-* targets <osclass> is vxWorks.
For RTEMS-* targets <osclass> is RTEMS.
For solaris-* targets <osclass>is solaris.
For win32-* targets <osclass> is WIN32.

For linux-* targets <osclass> is Linux.

For darwin-* targets <osclass> is Darwin.
For aix-* targets <osclass> is AIX.

For example the following Makefile lines specify that product aaa should be created for all systems. Product bbb
should be created for systems that do not have OS_CLASS defined as solaris.

PROD = aaa
PROD_solaris = —-nil-

PROD_DEFAULT = bbb



40 CHAPTER 4. BUILD FACILITY

4.3.7 Specifying T_A specific definitions

It is possible for the user to limit the systems for which a particular definition applies to specific target systems.

For example the following Makefile lines specify that product aaa should be created for all target architecture which
allow IOC type products and product bbb should be created only for the vxWorks-68040 and vxWorks-ppc603 targets.
Remember T_A is the build’s current target architecture. so PROD_IOC has the bbb value only when the current built
target architecture is vwWorks-68040 or vxWorks-ppc603

PROD_IOC = aaa
VX_PROD_vxWorks—-68040 = bbb
VX_PROD_vxWorks—-ppc603 = bbb

PROD_IOC += VX_PROD_S$ (T_A)

4.3.8 Host and Ioc targets

Build creates two type of makefile targets: Host and Ioc. Host targets are executables, object files, libraries, and scripts
which are not part of iocCore. Ioc targets are components of ioc libraries, executables, object files, or iocsh scripts
which will be run on an ioc.

Each supported target system has a VALID_BUILDS definition which specifies the type of makefile targets it can sup-
port. This definition appears in configure/os/CONFIG.Common.<arch>orconfigure/os/CONFIG.<arch>.<arch>
files.

For vxWorks systems VALID_BUILDS is set to “Ioc”.

For Unix type systems, VALID_BUILDS is set to “Host Ioc”.
For RTEMS systems, VALID_BUILDS is set to “loc”.

For WIN32 systems, VALID_BUILDS is set to “Host Ioc”.

In a Makefile it is possible to limit the systems for which a particular PROD, TESTPROD, LIBRARY, SCRIPTS, and
OBIS is built. For example the following Makefile lines specify that product aaa should be created for systems that
support Host type builds. Product bbb should be created for systems that support Ioc type builds. Product ccc should
be created for all target systems.

PROD_HOST = aaa
PROD_IOC = bbb
PROD = ccc

These definitions can be further limited by specifying an appended underscore “_” followed by an osclass or DEFAULT
specification.

4.3.9 User specific override definitions

User specific override definitions are allowed in user created files in the user’s <home>/configure subdirectory.
These override definitions will be used for builds in all <t op> directory structures. The files must have the following
names.

<home>/configure/CONFIG_USER
<home>/configure/CONFIG_USER.<epics_host_arch>
<home>/configure/CONFIG_USER.Common.<targetarch>
<home>/configure/CONFIG_USER.<epics_host_arch>.<targetarch>



4.4. MAKEFILES 41

4.4 Makefiles

4.4.1 Name

The name of the makefile in each directory must be Makefile.

4.4.2 Included Files

Makefiles normally include files from <top>/configure. Thus the makefile “inherits” rules and definitions from
configure. The files in <top>/configure may in turn include files from another <top>/configure. This
technique makes it possible to share make variables and even rules across <t op> directories.

4.4.3 Contents of Makefiles
4.4.3.1 Makefiles in directories containing subdirectories

A Makefile in this type of directory must define where <t op> is relative to this directory, include <top>/configure
files, and specify the subdirectories in the desired order of make execution. Running gnumake in a directory with the
following Makefile lines will cause gnumake to be executed in <dir1> first and then <dir2>. The build rules do
not allow a Makefile to specify both subdirectories and components to be built.

TOP=../..

include $(TOP)/configure/CONFIG
DIRS += <dirl> <dir2>

include $(TOP)/configure/RULES_DIRS

4.4.3.2 Makefiles in directories where components are to be built

A Makefile in this type of directory must define where <t op> is relative to this directory, include <t op> configure
files, and specify the target component definitions. Optionally it may contain user defined rules. Running gnumake
in a directory with this type of Makefile will cause gnumake to create an O.<arch> subdirectory and then execute
gnumake to build the defined components in this subdirectory. It contains the following lines:

TOP=../../..

include $(TOP)/configure/CONFIG
<component definition lines>
include $(TOP)/configure/RULES
<optional rules definitions>

4.4.4 Simple Makefile examples

Create an IOC type library named asloc from the source file asDbLib.c and install it into the $ (INSTALL_LOCATION) /lib/<arch>
directory.

TOP=../../..

include $(TOP)/configure/CONFIG
LIBRARY_IOC += asloc

asIoc_SRCS += asDblLib.c

include $(TOP)/configure/RULES



42 CHAPTER 4. BUILD FACILITY

For each Host type target architecture, create an executable named catest from the catestl.c and catest2.c source
files linking with the existing EPICS base ca and Com libraries, and then install the catest executable into the
$ (INSTALL_LOCATION) /bin/<arch> directory.

TOP=../../..

include $(TOP)/configure/CONFIG
PROD_HOST = catest

catest_SRCS += catestl.c catest2.c
catest_LIBS = ca Com

include $(TOP)/configure/RULES

4.5 Make

4.5.1 Make vs. gnumake

EPICS provides an extensive set of make rules. These rules only work with the GNU version of make, gnumake,
which is supplied by the Free Software Foundation. Thus, on most Unix systems, the native make will not work. On
some systems, e.g. Linux, GNU make may be the default. This manual always uses gnumake in the examples.

4.5.2 Frequently used Make commands

NOTE: It is possible to invoke the following commands for a single target architecture by appending <arch> to the
target in the command.

The most frequently used make commands are:

gnumake This rebuilds and installs everything that is not up to date. NOTE: Executing gnumake without arguments
is the same as “gnumake install”

gnumake help This command can be executed from the <t op> directory only. This command prints a page describ-
ing the most frequently used make commands.

gnumake install This rebuilds and installs everything that is not up to date.
gnumake all This is the same as “gnumake install”.
gnumake buildInstall This is the same as “gnumake install”.

gnumake <arch> This rebuilds and installs everything that is not up to date first for the host arch and then (if
different) for the specified target arch.

NOTE: This is the same as “gnumake install.<arch>”

gnumake clean This can be used to save disk space by deleting the O . <arch> directories that gnumake will create,
but does not remove any installed files from the bin, db, dbd etc. directories. “gnumake clean.<arch>”
can be invoked to clean a single architecture.

gnumake archclean This command will remove the current build’s O. <arch> directories but not O.Common di-
rectory.

gnumake realclean This command will remove ALL the O.<arch> subdirectories (even those created by a gnu-
make from another EPICS_HOST_ARCH).

gnumake rebuild This is the same as “gnumake clean install”. If you are unsure about the state of the generated files
in an application, just execute “gnumake rebuild”.

gnumake uninstall This command can be executed from the <top> directory only. It will remove everything in-
stalled by gnumake in the include, lib, bin, db, dbd, etc. directories.



4.6. MAKEFILE DEFINITIONS 43

gnumake realuninstall This command can be executed from the <t op> directory only. It will remove all the install
directories, include, lib, bin, db, dbd, etc.

gnumake distclean This command can be executed from the <t op> directory only. It is the same as issuing both the
realclean and realuninstall commands.

gnumake cvsclean This command can be executed from the <t op> directory only. It removes cvs .#* files in the
make directory tree.

4.5.3 Make targets

The following is a summary of targets that can be specified for gnumake:
e <action>
e <arch>
e <action>.<arch>
e <dir>
e <dir>.<action>
e <dir>.<arch>
e <dir>.<action>.<arch>
where:
<arch> is an architecture such as solaris-sparc, vxWorks-68040, win32-x86, etc.
<action> is help, clean, realclean, distclean, inc, install, build, rebuild, buildInstall, realuninstall, or uninstall
NOTE: help, uninstall, distclean, cvsclean, and realuninstall can only be specified at <t op>.
NOTE: realclean cannot be specified inside an O . <arch> subdirectory.
<dir> is subdirectory name

Note: You can build using your os vendors’ native compiler and also build using a supported alternate compiler in the
same directory structure because the executables and libraries will be created and installed into separate directories (e.g
bin/solaris-sparc and bin/solaris-sparc-gnu). You can do this by changing your EPICS_HOST_ARCH, environment
variable between builds or by setting EPICS_HOST_ARCH on the gnumake command line.

From Base R3.14.11 the build system will always ensure the host architecture is up to date before building a cross-
compiled target, thus Makefiles must be explicit in defining which architectures a componen should be built for.

4.5.4 Header file dependencies

All product, test product, and library source files which appear in one of the source file definitions (e.g. SRCS,
PROD_SRCS, LIB_SRCS, <prodname>_SRCS) will have their header file dependencies automatically generated
and included as part of the Makefile if HDEPENDS is set to YES in the Makefile and/or in base/configure/CONFIG_SITE.

4.6 Makefile definitions

The following components can be defined in a Makefile:



44 CHAPTER 4. BUILD FACILITY

4.6.1 Source file directories
Normally all product, test product, and library source files reside in the same directory as the Makefile. OS specific
source files are allowed and should reside in subdirectories os/<os_class> or os/posix or os/default.

The build rules also allow source files to reside in subdirectories of the current Makefile directory (src directory). For
each subdirectory <dir> containing source files add the SRC_DIRS definition.

SRC_DIRS += <dir>
where <dir> is a relative path definition. An example of SRC_DIRS is
SRC_DIRS += ../dirl ../dir2

The directory search order for the above definition is

./0s/$(0S_CLASS) ../os/posix ../os/default

../dirl/os/$(0S_CLASS) ../dirl/os/posix ../dirl/os/default
./dir2/0s/$(0S_CLASS) ../dir2/os/posix ../dir2/os/default

./dirl ../dir2

where the build directory O.<arch>is . and the src directory is . ..

4.6.2 Posix C source code

The epics base config files assume posix source code and define POSIX to be YES as the default. Individual Makefiles
can override this by setting POSIX to NO. Source code files may have the suffix .c, .cc, .cpp, or .C.

4.6.3 Breakpoint Tables

For each breakpoint table dbd file, bpt <table name>.dbd, to be created from an existing bpt<table name>.data
file, add the definition

DBD += bpt<table name>.dbd

to the Makefile. The following Makefile will create a bptTypeJdegC.dbd file from an existing bptTypeJdegC.data file
using the EPICS base utility program makeBpt and install the new dbd file into the $(INSTALL_LOCATION)/dbd
directory.

TOP=../../..

include $(TOP)/configure/CONFIG
DBD += bptTypeddegC.dbd

include $(TOP)/configure/RULES

4.6.4 Record Type Definitions

For each new record type, the following definition should be added to the makefile:
DBDINC += <rectype>Record

A <rectype>Record.h header file will be created from an existing <rectype>Record.dbd file using the
EPICS base utility program dbToRecordTypeH. This header will be installed into the $(INSTALL_LOCATION)/include
directory and the dbd file will be installed into the $(INSTALL_LOCATION)/dbd directory.

The following Makefile will create xxxRecord.h from an existing xxxRecord.dbd file, install xxxRecord.h into $(IN-
STALL_LOCATION)/include, and install xxxRecord.dbd into $(INSTALL_LOCATION)/dbd.



4.6. MAKEFILE DEFINITIONS 45

TOP=../../..

include $(TOP)/configure/CONFIG
DBDINC += xxxRecord

include $(TOP)/configure/RULES

4.6.5 Menus

If a menu menu<name> . dbd file is present, then add the following definition:
DBDINC += menu<name>.h

The header file, menu<name>.h will be created from the existing menu<name> . dbd file using the EPICS base
utility program dbToMenuH and installed into the $ (INSTALL_LOCATION) /include directory and the menu
dbd file will be installed into $(INSTALL_LOCATION)/dbd.

The following Makefile will create a menuConvert.h file from an existing menuConvert.dbd file and install menuCon-
vert.h into $(INSTALL_LOCATION )/include and menuConvert.dbd into $(INSTALL_LOCATION)/dbd.

TOP=../../..

include $(TOP)/configure/CONFIG
DBDINC = menuConvert.h

include $(TOP)/configure/RULES

4.6.6 Expanded Database Definition Files

Database definition include files named <name>Include.dbd containing includes for other database definition
files can be expanded by the EPICS base utility program dbExpand into a created <name>.dbd file and the
<name>.dbd file installed into $(INSTALL_LOCATION)/dbd. The following variables control the process:

DBD += <name>.dbd

USR_DBDFLAGS += —-I <include path>
USR_DBDFLAGS += —-S <macro substitutions>
<name>_DBD += <filel>.dbd <file2>.dbd ...

where
DBD += <name>.dbd

is the name of the output dbd file to contain the expanded definitions. It is created by expanding an existing or build
created <name>Include.dbd file and then copied into $(INSTALL_LOCATION)/dbd.

An example of a file to be expanded is exampleInclude.dbd containing the following lines

include "base.dbd"
include "xxxRecord.dbd"
device (xxx, CONSTANT, devXxxSoft, "SoftChannel")

USR_DBDFLAGS defines optional flags for dbExpand. Currently only an include path (-I <path>) and macro
substitution (-S <substitution>) are supported. The include paths for EPICS base/dbd, and other <t op>/dbd
directories will automatically be added during the build if the <t op> names are specified in the configure/RELEASE
file.

A database definition include file named <name>Include.dbd containing includes for other database definition
files can be created from a <name>_DBD definition. The lines

DBD += <name>.dbd
<name>_DBD += <filel>.dbd <file2>.dbd



46 CHAPTER 4. BUILD FACILITY

will create an expanded dbd file <name>.dbd by first creating a <name>Include.dbd. For each filename in
the <name>_DBD definition, the created <name>Include.dbd will contain an include statement for that file-
name. Then the expanded DBD file is generated from the created <name>Include.dbd file and installed into
$(INSTALL_LOCATION)/ dbd.

The following Makefile will create an expanded dbd file named example.dbd from an existing exampleInclude.dbd file
and then install example.dbd into the $(INSTALL_LOCATION)/dbd directory.

TOP=../../..

include $(TOP)/configure/CONFIG
DBD += exampleApp.dbd

include $(TOP)/configure/RULES

The following Makefile will create an examplelnclude.dbd file from the example_DBD definition then expand it to
create an expanded dbd file, example.dbd, and install example.dbd into the $(INSTALL_LOCATION)/dbd directory.

TOP=../../..

include $(TOP)/configure/CONFIG

DBD += example.dbd

example_DBD += base.dbd xxxRecord.dbd xxxSupport.dbd
include $(TOP)/configure/RULES

The created examplelnclude.dbd file will contain the following lines

include "base.dbd"
include "xxxRecord.dbd"
include "xxxSupport.dbd"

4.6.7 Registering Support Routines for Expanded Database Definition Files
A source file which registers simple static variables and record/device/driver support routines with iocsh can be created.
The list of variables and routines to register is obtained from lines in an existing dbd file.

The following line in a Makefile will result in <name>_registerRecordDeviceDriver.cpp being created,
compiled, and linked into <prodname>. It requires that the file <name>.dbd exist or can be created using other
make rules.

<prodname>_SRCS += <name>_registerRecordDeviceDriver.cpp

An example of registering the variable mySubDebug and the routines mySublnit and mySubProcess is <name> . dbd
containg the following lines

variable (mySubDebug)
function (mySubInit)
function (mySubProcess)

4.6.8 Database Definition Files

The following line installs the existing named dbd files into $(INSTALL_LOCATION)/dbd without expansion.

DBD += <name>.dbd

4.6.9 DBD install files

Definitions of the form:

DBD_INSTALLS += <name>



4.6. MAKEFILE DEFINITIONS 47

result in files being installed to the $(INSTALL_LOCATION/dbd directory. The file <name> can appear with or
without a directory prefix. If the file has a directory prefix e.g. $(APPNAME)/dbd/, it is copied from the specified
location. If a directory prefix is not present, make will look in the current source directory for the file.

4.6.10 Database Files

For most databases just the name of the database has to be specified. Make will figure out how to generate the file:
DB += xxx.db
generates xxx.db depending on which source files exist and installs it into S(INSTALL_LOCATION)/db.

A <name> . db database file will be created from an optional <name> . template file and/or an optional <name>. substitutions
file, If the substitution file exists but the template file is not named <name>.template, the template file name can
be specified as

<name>_TEMPLATE = <template file name>

A x<nn>.db database file will be created from a *.template and a x<nn>. substitutions file, (where nn is an
optional index number).

If a <name> substitutions file contains “file” references to other input files, these referenced files are made dependen-
cies of the created <name> . db by the makeDbDepends.pl perl tool.

The Macro Substitutions and Include tool, msi, will be used to generate the database, and msi must either be in your
path or you must redefine MSI as the full path name to the msi binary in a RELEASE file or Makefile. An example
MSI definition is

MSI = /usr/local/epics/extensions/bin/${EPICS_HOST_ARCH}/msi

Template files <name>.template, and db files, <name> . db, will be created from an edf file <name>.edf and
an <name> . edf file will be created from a <name> . sch file.

Template and substitution files can be installed.
DB += xxx.template xxx.substitutions

generates and installs these files. If one or more xxx.substitutions files are to be created by script, the script name must
be placed in the CREATESUBSTITUTIONS variable (e.g. CREATESUBSTITUTIONS=mySubst.pl). This script
will be executed by gnumake with the prefix of the substitution file name to be generated as its argument. If (and only
if) there are script generated substitutions files, the prefix of any inflated database’s name may not equal the prefix of
the name of any template used within the directory.

4.6.11 DB install files

Definitions of the form:
DB_INSTALLS += <name>

result in files being installed to the SINSTALL_LOCATION/db directory. The file <name> can appear with or without
a directory prefix. If the file has a directory prefix e.g. $(APPNAME)/db/, it is copied from the specified location. If a
directory prefix is not present, make will look in the current source directory for the file.

4.6.12 Compile and link command options

Any of the following can be specified:



48 CHAPTER 4. BUILD FACILITY

4.6.12.1 Options for all compile/link commands.

These definitions will apply to all compiler and linker targets.
USR_INCLUDES += —-I<name>
header file directories each prefixed by a “-I"".
USR_INCLUDES_<osclass> += —-I<name>
os specific header file directories each prefixed by a “-I”.
USR_INCLUDES_DEFAULT += —-I<name>

header file directories each prefixed by “~I” for any arch that does not have a USR_INCLUDE_<osclass>
definition

USR_CFLAGS += <c flags>
C compiler options.
USR_CFLAGS_<osclass> += <c flags>
os specific C compiler options.
USR_CFLAGS_<arch> += <c flags>
target architecture specific C compiler options.
USR_CFLAGS_DEFAULT += <c flags>
C compiler options for any arch that does not have a USR_CFLAGS_<osclass> definition
USR_CXXFLAGS += <c++ flags>
C++ compiler options.
USR_CXXFLAGS_<osclass> += <c++ flags>
C++ compiler options for the specified osclass.
USR_CXXFLAGS_<arch> += <c++ flags>
C++ compiler options for the specified target architecture.
USR_CXXFLAGS_DEFAULT += <c++ flags>
C++ compiler options for any arch that does not have a USR_CXXFLAGS_<osclass> definition
USR_CPPFLAGS += <preprocessor flags>
C preprocessor options.
USR_CPPFLAGS_<osclass> += <preprocessor flags>
os specific C preprocessor options.
USR_CPPFLAGS_<arch> += <preprocessor flags>
target architecture specific C preprocessor options.
USR_CPPFLAGS_DEFAULT += <preprocessor flags>
C preprocessor options for any arch that does not have a USR_CPPFLAGS_<osclass> definition
USR_LDFLAGS += <linker flags>

linker options.



4.6. MAKEFILE DEFINITIONS

USR_LDFLAGS_<osclass> += <linker flags>
os specific linker options.
USR_LDFLAGS_DEFAULT += <linker flags>

linker options for any arch that does not have a USR_LDFLAGS_<osclass> definition

4.6.12.2 Options for a target specific compile/link command.

<name>_INCLUDES += —-I<name>

header file directories each prefixed by a “-I”.
<name>_INCLUDES_<osclass> += —-I<name>

os specific header file directories each prefixed by a “-I”.
<name>_INCLUDES_<T_A> += —-I<name>

target architecture specific header file directories each prefixed by a “-I”.
<name>_CFLAGS += <c flags>

¢ compiler options.
<name>_CFLAGS_<osclass> += <c flags>

os specific ¢ compiler options.
<name>_CFLAGS_<T_A> += <c flags>

target architecture specific ¢ compiler options.
<name>_CXXFLAGS += <c++ flags>

c++ compiler options.
<name>_CXXFLAGS_<osclass> += <c++ flags>

c++ compiler options for the specified osclass.
<name>_CXXFLAGS_<T_A> += <c++ flags>

c++ compiler options for the specified target architecture.
<name>_CPPFLAGS += <preprocessor flags>

C preprocessor options.
<name>_CPPFLAGS_<osclass> += <preprocessor flags>

os specific ¢ preprocessor options.
<name>_CPPFLAGS_<T_A> += <preprocessor flags>

target architecture specific ¢ preprocessor options.
<name>_LDFLAGS += <linker flags>

linker options.
<name>_LDFLAGS_<osclass> += <linker flags>

os specific linker options.

49



50 CHAPTER 4. BUILD FACILITY

4.6.13 Libraries

A library is created and installed into $ (INSTALL_LOCATION) /lib/<arch> by specifying its name and the
name of the object and/or source files containing code for the library. An object or source file name can appear with
or without a directory prefix. If the file name has a directory prefix e.g. $(EPICS_BASE_BIN), it is taken from the
specified location. If a directory prefix is not present, make will first look in the source directories for a file with the
specified name and next try to create the file using existing configure rules. A library filename prefix may be prepended
to the library name when the file is created. For Unix type systems and vxWorks the library prefix is lib and there is
no prefix for WIN32. Also a library suffix appropriate for the library type and target arch (e.g. .a, .so, .lib, .dll) will be
appended to the filename when the file is created.

vxWorks and RTEMS Note: Only archive libraries are created.

Shared libraries Note: Shared libraries can be built for any or all HOST type architectures. The definition of SHARED_LIBRARIES
(YES/NO) in base/configure/CONFIG_SITE determines whether shared or archive libraries will be built. When

SHARED _LIBRARIES is YES, both archive and shared libraries are built. This definition can be overridden for a spe-
cificarchinan configure/os/CONFIG_SITE. <arch>.Common file.,The default definition for SHARED _LIBRARIES

in the EPICS base distribution file is YES for all host systems.

win32 Note: An object library file is created when SHARED_LIBRARIES=NO, <name>.1ib which is installed
into $ (INSTALL_LOCATION) /1lib/<arch>. Two library files are created when SHARED_LIBRARIES=YES,
<name>. lib, an import library for DLLs, which is installed into $ (INSTALL_LOCATION) /lib/<arch>, and
<name>.d11 whichisinstalled into $ (INSTALL_LOCATION) /bin/<arch>. (Warning: The file <name>.1ib
will only be created by the build if there are exported symbols from the library.) If SHARED _LIBRARIES=YES, the
directory

$ (INSTALL_LOCATION) /bin/<arch> must be in the user’s path during builds to allow invoking executables
which were linked with shared libraries. NOTE: the <name> . 1ib files are different for shared and nonshared builds.

4.6.13.1 Specifying the library name.

Any of the following can be specified:

LIBRARY += <name>

A library will be created for every target arch.
LIBRARY_<osclass> += <name>

Library <name> will be created for all archs of the specified osclass.
LIBRARY_DEFAULT += <name>

Library <name> will be created for any arch that does not have a LIBRARY_<osclass> definition
LTIBRARY_TOC += <name>

Library <name> will be created for IOC type archs.
LIBRARY _IOC_<osclass> += <name>

Library <name> will be created for all IOC type archs of the specified osclass.
LIBRARY_TOC_DEFAULT += <name>

Library <name> will be created for any IOC type arch that does not have a LIBRARY_IOC_<osclass>
definition

LIBRARY_HOST += <name>

Library <name> will be created for HOST type archs.



4.6. MAKEFILE DEFINITIONS 51

LIBRARY_HOST_<osclass> += <name>
Library <name> will be created for all HOST type archs of the specified osclass.
LTBRARY_HOST_DEFAULT += <name>

Library <name> will be created for any HOST type arch that does not have a LIBRARY_HOST_<osclass>
definition

4.6.13.2 Specifying library source file names

Source file names, which must have a suffix, are defined as follows:
SRCS += <name>
Source files will be used for all defined libraries and products.
SRCS_<osclass> += <name>
Source files will be used for all defined libraries and products for all archs of the specified osclass.
SRCS_DEFAULT += <name>

Source files will be used for all defined libraries and products for any arch that does not have a SRCS_<osclass>
definition

LIBSRCS and LIB_SRCS have the same meaning. LIBSRCS is deprecated, but retained for R3.13 compatibility.
LIBSRCS += <name>
Source files will be used for all defined libraries.
LIBSRCS_<osclass> += <name>
Source files will be used for all defined libraries for all archs of the specified osclass.
LIBSRCS_DEFAULT += <name>

Source files will be used for all defined libraries for any arch that does not have a LIBSRCS_<osclass>
definition

USR_SRCS += <name>

Source files will be used for all defined products and libraries.

USR_SRCS_<osclass> += <name>
Source files will be used for all defined products and libraries for all archs of the specified osclass.
USR_SRCS_DEFAULT += <name>

Source files will be used for all defined products and libraries for any arch that does nothave a USR_SRCS_<osclass>
definition

LIB_SRCS += <name>

Source files will be used for all libraries.
LIB_SRCS_<osclass> += <name>

Source files will be used for all defined libraries for all archs of the specified osclass.
LIB_SRCS_DEFAULT += <name>

Source files will be used for all defined libraries for any arch that does not have a LIB_SRCS_<osclass>
definition



52 CHAPTER 4. BUILD FACILITY

<libname>_SRCS += <name>

Source files will be used for the named library.
<libname>_SRCS_<osclass> += <name>

Source files will be used for named library for all archs of the specified osclass.
<libname>_SRCS_DEFAULT += <name>

Source files will be used for named library for any arch that does not have a <libname>_SRCS_<osclass>
definition

4.6.13.3 Specifying library object file names

Library object file names should only be specified for object files which will not be built in the current directory. For
object files built in the current directory, library source file names should be specified. See Specifying Library Source
File Names above.

[T3P L)

Object files which have filename with a “.0” or “.obj” suffix are defined as follows and can be specified without the
suffix but should have the directory prefix

USR_OBJS += <name>

Object files will be used in builds of all products and libraries
USR_OBJS_<osclass> += <name>

Object files will be used in builds of all products and libraries for archs with the specified osclass.
USR_OBJS_DEFAULT += <name>

Object files will be used in builds of all products and libraries for archs without a USR_OBJS_<osclass>
definition specified.

LIB_OBJS += <name>

Object files will be used in builds of all libraries.
LIB_OBJS_<osclass> += <name>

Object files will be used in builds of all libraries for archs of the specified osclass.
LIB_OBJS_DEFAULT += <name>

Object files will be used in builds of all libraries for archs without a LIB_OBJS_<osclass> definition spec-
ified.

<libname>_OBJS += <name>

Object files will be used for all builds of the named library)
<libname>_OBJS_<osclass> += <name>

Object files will be used in builds of the library for archs with the specified osclass.
<libname>_OBJS_DEFAULT += <name>

Object files will be used in builds of the library for archs withouta <1ibname>_0OBJS_<osclass> definition
specified.

[T3PR L)

Combined object files, from R3.13 built modules and applications which have file names that do not include a “.0” or
”.0bj” suffix (e.g. xyzLib) are defined as follows:



4.6. MAKEFILE DEFINITIONS 53

USR_OBJLIBS += <name>

Combined object files will be used in builds of all libraries and products.
USR_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of all libraries and products for archs of the specified osclass.
USR_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of all libraries and products for archs withouta USR_OBJLIBS_<osclass>
definition specified.

LIB_OBJLIBS += <name>

Combined object files will be used in builds of all libraries.
LIB_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of all libraries for archs of the specified osclass.
LIB_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of all libraries for archs without a LIB_OBJLIBS_<osclass>
definition specified.

<libname>_OBJLIBS += <name>

Combined object files will be used for all builds of the named library.
<libname>_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of the library for archs with the specified osclass.
<libname>_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of the library for archs withouta <1 ibname>_OBJLIBS_<osclass>
definition specified.

<libname>_LDOBJS += <name>

Combined object files will be used for all builds of the named library. (deprecated)
<libname>_LDOBJS_<osclass> += <name>

Combined object files will be used in builds of the library for archs with the specified osclass. (deprecated)
<libname>_LDOBJS_DEFAULT += <name>

Combined object files will be used in builds of the library for archs withouta <1ibname>_LDOBJS_<osclass>
definition specified. (deprecated)

4.6.13.4 LIBOBJS definitions

Previous versions of epics (3.13 and before) accepted definitions like:
LIBOBJS += S$<support>_BIN) /xxx.0
These are gathered together in files such as baseLIBOBIJS. To use such definitions include the lines:

—include ../baseLIBORJS



54 CHAPTER 4. BUILD FACILITY

<libname>_OBJS += $ (LIBOBJS)

Note: vxWorks applications created by makeBaseApp.pl from 3.14 Base releases no longer have a file named
baseLIBOBJS. Base record and device support now exists in archive libraries.

4.6.13.5 Specifying dependant libraries to be linked when creating a library
For each library name specified which is not a system library nor a library from an EPICS top defined in the configure/
RELEASE file, a <name>_D1IR definition must be present in the Makefile to specify the location of the library.
Library names, which must not have a directory and “lib” prefix nor a suffix, are defined as follows:
LIB_LIBS += <name>
Libraries to be used when linking all defined libraries.
LIB_LIBS_<osclass> += <name>
Libraries to be used or all archs of the specified osclass when linking all defined libraries.
LIB_LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a LIB_LIBS_<osclass> definition when linking all
defined libraries.

USR_LIBS += <name>

Libraries to be used when linking all defined products and libraries.
USR_LIBS_<osclass> += <name>

Libraries to be used or all archs of the specified osclasswhen linking all defined products and libraries.
USR_LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a USR_LIBS_<osclass> definition when linking all
defined products and libraries.

<libname>_LIBS += <name>

Libraries to be used for linking the named library.
<libname>_ LIBS_<osclass> += <name>

Libraries will be used for all archs of the specified osclass for linking named library.
<libname>_ LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a <1 ibname>_LIBS_<osclass> definition when linking
named library.

<libname>_SYS_LIBS += <name>
System libraries to be used for linking the named library.
<libname>_SYS_ LIBS_<osclass> += <name>

System libraries will be used for all archs of the specified osclass for linking named library.



4.6. MAKEFILE DEFINITIONS 55

<libname>_SYS_LIBS_DEFAULT += <name>

System libraries to be used for any arch that does not have a <1 ibname>_LIBS_<osclass> definition when
linking named library.

4.6.13.6 The order of dependant libraries

Dependant library names appear in the following order on a library link line:

1. <libname>_LIBS

N

<libname>_LIBS_<osclass> or <libname>_LIBS_DEFAULT
LIB_LIBS

LIB_LIBS_<osclass>or LIB_LIBS_DEFAULT

USR_LIBS

USR_LIBS_<osclass>or USR_LIBS_DEFAULT

<libname>_SYS LIBS

® N kW

<libname>_SYS LIBS_<osclass>or <libname>_SYS_ LIBS DEFAULT

o

LIB_SYS_LIBS
10. LIB_SYS_LIBS_<osclass>or LIB_SYS_LIBS_DEFAULT
11. USR_SYS_LIBS

12. USR_SYS_LIBS_<osclass>or USR_SYS_LIBS_DEFAULT

4.6.13.7 Specifying library DLL file names (deprecated)
WIN32 libraries require all external references to be resolved, so if a library contains references to items in other DLL
libraries, these DLL library names must be specified (without directory prefix and without “.d1l”” suffix) as follows:
DLL_LIBS += <name>
These DLLs will be used for all libraries.
<libname>_ DLL_LIBS += <name>
These DLLs will be used for the named library.

Each <name> must have a corresponding <name>_D1IR definition specifying its directory location.

4.6.13.8 Specifying shared library version number

A library version number can be specified when creating a shared library as follows:
SHRLIB_VERSION += <version>

On WIN32 thisresultsin /version:$ (SHRLIB_VERSION) link option. On Unix type hosts . $ (SHRLIB_VERSION)
is appended to the shared library name and a symbolic link is created for the unversioned library name.
S (EPICS_VERSION) .$ (EPICS_REVISION) is the default value for SHRLIB_VERSION.



56 CHAPTER 4. BUILD FACILITY

4.6.13.9 Library example:

LIBRARY_vxWorks += vxWorksOnly
LIBRARY_IOC += iocOnly

LIBRARY_HOST += hostOnly

LIBRARY += all

vxWorksOnly_OBJS += $(LINAC_BIN) /vxOnlyl
vWorksOnly_SRCS += vxOnly2.c
iocOnly_OBJS += $(LINAC_BIN)/iocOnlyl
iocOnly_SRCS += iocOnly2.cpp
hostOnly_OBJS += $(LINAC_RIN) /hostl
all OBJS += S$(LINAC_BIN)/alll

all SRCS += all2.cpp

If the architectures defined in <top>/configure are solaris-sparc and vxWorks-68040 and LINAC is defined in
the <top>/configure/RELEASE file, then the following libraries will be created:

e $(INSTALL_LOCATION)/bin/vxWork-68040/libvxWorksOnly.a : $(LINAC_BIN)/vxOnly1.0 vxOnly2.0
e $(INSTALL_LOCATION)/bin/vxWork-68040/libiocOnly.a : $(LINAC_BIN/iocOnly1.0 iocOnly2.0

e $(INSTALL_LOCATION)/lib/solaris-sparc/libiocOnly.a : $(LINAC_BIN)/iocOnly1.0 iocOnly2.0

e $(INSTALL_LOCATION)/lib/solaris-sparc/libhostOnly.a : $(LINAC_BIN)/host1.o

o $(INSTALL_LOCATION)/bin/vxWork-68040/liball.a : $(LINAC_BIN)/alll.o all2.0

e $(INSTALL_LOCATION)/lib/solaris-sparc/liball.a : $(LINAC_BIN)/alll.o all2.o0

4.6.14 Loadable libraries

Loadable libraries are regular libraries which are not required to have all symbols resolved during the build. The
intent is to create dynamic plugins so no archive library is created. Source file, object files, and dependant libraries are
specified in exactly the same way as for regular libraries.

Any of the following can be specified:
LOADABLE_LIBRARY += <name>
The <name> loadable library will be created for every target arch.
LOADABLE_LIBRARY_<osclass> += <name>
Loadable library <name> will be created for all archs of the specified osclass.
item LOADABLE_LIBRARY_DEFAULT += <name>

Loadable library <name> will be created for any arch that does not have a LOADABLE_LIBRARY_<osclass>
definition

LOADABLE_LIBRARY_HOST += <name>

Loadable library <name> will be created for HOST type archs.
LOADABLE_LIBRARY_HOST_<osclass> += <name>

Loadable library <name> will be created for all HOST type archs of the specified osclass.

LOADABLE_LIBRARY_HOST_DEFAULT += <name>



4.6. MAKEFILE DEFINITIONS 57

Loadable library <name> will be created for any HOST type arch that does not have a
LOADABLE_LIBRARY_HOST_<osclass> definition

4.6.15 Combined object libraries (VxWorks only)

Combined object libraries are regular combined object files which have been created by linking together multiple
object files. OBJLIB specifications in the Makefile create a combined object file and a corresponding munch file for
vxWorks target architectures only. Combined object libraries have a Library.o suffix. It is possible to generate and
install combined object libraries by using definitions:

OBJLIB += <name>

OBJLIB_vxWorks += <name>

OBJLIB_SRCS += <srcnamel> <srcname2l>
OBJLIB_OBJS += <objnamel> <objname2>

These definitions result in the combined object file <name>Library . o and its corresponding <name>Library.munch
munch file being built for each vxWorks architecture from source/object files in the OBJLIB_SRCS/OBJLIB_OBIJS
definitions. The combined object file and the munch file are installed into the $ (INSTALL_LOCATION) /bin/<arch>
directory.

4.6.16 Object Files

It is possible to generate and install object files by using definitions:
OBJS += <name>

OBJS_<osclass> += <name>

OBJS_DEFAULT += <name>

OBJS_IOC += <name>

OBJS_IOC_<osclass> += <name>
OBJS_IOC_DEFAULT += <name>

OBJS_HOST += <name>

OBJS_HOST_<osclass> += <name>
OBJS_HOST_DEFAULT += <name>

These will cause the specified file to be generated from an existing source file for the appropriate target arch and
installed into $ (INSTALL_LOCATION) /bin/<arch>.

The following Makefile will create the abc object file for all target architectures, the def object file for all target archs
except vxWorks, and the xyz object file only for the vxWorks target architecture and install them into the appropriate
$ (INSTALL_LOCATION) /bin/<arch> directory.

TOP=../../..

include $(TOP) /configure/CONFIG
OBJS += abc

OBJS_vxWorks += xyz
OBJS_DEFAULT += def

include $(TOP)/configure/RULES



58 CHAPTER 4. BUILD FACILITY

4.6.17 State Notation Programs

A state notation program file can be specified as a source file in any SRC definition. For example:
<prodname>_SRCS += <name>.stt

The state notation compiler snc will generate the file <name> . ¢ from the state notation program file <name>. stt.
This C file is compiled and the resulting object file is linked into the <prodname> product.

A state notation source file must have the extension . st or .stt. The . st file is passed through the C preprocessor
before it is processed by snc.

If you have state notation language source files (. stt and . st files), the module seq must be built and SNCSEQ
defined in the RELEASE file. If the state notation language source files require ¢ preprocessing before conversion to
¢ source (. st files), gcc must be in your path.

4.6.18 Scripts, etc.

Any of the following can be specified:

SCRIPTS += <name>

A script will be installed from the src directory to the $ (INSTALL_LOCATION) /bin/<arch> directories.
SCRIPTS_<osclass> += <name>

Script <name> will be installed for all archs of the specified osclass.
SCRIPTS_DEFAULT += <name>

Script <name> will be installed for any arch that does not have a SCRIPTS_<osclass> definition
SCRIPTS_IOC += <name>

Script <name> will be installed for IOC type archs.
SCRIPTS_IOC_<osclass> += <name>

Script <name> will be installed for all IOC type archs of the specified osclass.
SCRIPTS_IOC_DEFAULT += <name>

Script <name> will be installed for any IOC type arch that does not have a SCRIPTS_IOC_<osclass>
definition

SCRIPTS_HOST += <name>

Script <name> will be installed for HOST type archs.
SCRIPTS_HOST_<osclass> += <name>

Script <name> will be installed for all HOST type archs of the specified osclass.
SCRIPTS_HOST_DEFAULT += <name>

Script <name> will be installed for any HOST type arch that does not have a SCRIPTS_HOST_<osclass>
definition

Definitions of the form:

SCRIPTS_<osclass> += <namel>
SCRIPTS_DEFAULT += <name2>



4.6. MAKEFILE DEFINITIONS 59

results in the <name1> script being installed from the src directory to the $ (INSTALL_LOCATION) /bin/<arch>
directories for all target archs of the specified os class <osclass> and the <name2> script installed into the
$ (INSTALL_LOCATION) /bin/<arch> directories of all other target archs.

4.6.19 Include files

A definition of the form:

INC += <name>.h
results in file <name> . h being installed or created and installed to the $(INSTALL_LOCATION)/include directory.
Definitions of the form:

INC_DEFAULT += <name>.h
INC_<osclass> += <name>.h

results in file <name> . h being installed or created and installed into the appropriate $ (INSTALL_LOCATION) /include/os/<osc
directory.

4.6.20 Html and Doc files

A definition of the form:

HTMLS_DIR = <dirname>
HTMLS += <name>

results in file <name> being installed from the src directory to the $ (INSTALL_LOCATION) /html/<dirname>
directory.

A definition of the form:
DOCS += <name>

results in file <name> being installed from the src directory to the $(INSTALL_LOCATION)/doc directory.

4.6.21 Templates

Adding definitions of the form

TEMPLATES_DIR = <dirname>
TEMPLATES += <name>

results in the file <name> being installed from the src directory to the $ (INSTALL_LOCATION) /templates/<dirname>
directory. If a directory structure of template files is to be installed, the template file names may include a directory
prefix.

4.6.22 Lex and yac

If a <name>. c source file specified in a Makefile definition is not found in the source directory, gnumake will try
to build it from <name>.y and <name>_lex.1 files in the source directory. Lex converts a <name>. 1 Lex code
file to a lex.yy.c file which the build rules renames to <name>.c. Yacc converts a <name> .y yacc code file to a
y.tab.c file, which the build rules renames to <name>.c. Optionally yacc can create a y.tab.h file which the build
rules renames to <name> . h.



60 CHAPTER 4. BUILD FACILITY

4.6.23 Products

A product executable is created for each <arch> and installed into $ (INSTALL_LOCATION) /bin/<arch> by
specifying its name and the name of either the object or source files containing code for the product. An object or
source file name can appear with or without a directory prefix. Object files should contain a directory prefix. If the
file has a directory prefix e.g. $(EPICS_BASE_BIN), the file is taken from the specified location. If a directory prefix
is not present, make will look in the source directories for a file with the specified name or try build it using existing
rules. An executable filename suffix appropriate for the target arch (e.g. .exe) may be appended to the filename when
the file is created.

PROD specifications in the Makefile for vk Works target architectures create a combined object file with library refer-
ences resolved and a corresponding .munch file.

PROD_HOST += <name>
<name>_SRC += <srcname>.cC

results in the executable <name> being built for each HOST architecture, <arch>, from a <srcname>. c file. Then
<name> is installed into the $ (INSTALL_LOCATION) /bin/<arch> directory.

4.6.23.1 Specifying the product name.

Any of the following can be specified:
PROD += <name>
Product <name> will be created for every target arch.
PROD_<osclass> += <name>
Product <name> will be created for all archs of the specified osclass.
PROD_DEFAULT += <name>

Product <name> will be created for any arch that does not have a PROD_<osclass> definition

PROD_IOC += <name>

Product <name> will be created for IOC type archs.
PROD_IOC_<osclass> += <name>

Product <name> will be created for all IOC type archs of the specified osclass.
PROD_IOC_DEFAULT += <name>

Product <name> will be created for any IOC type arch that does not have a PROD_IOC_<osclass> definition

PROD_HOST += <name>

Product <name> will be created for HOST type archs.
PROD_HOST_<osclass> += <name>

Product <name> will be created for all HOST type archs of the specified osclass.
PROD_HOST_DEFAULT += <name>

Product <name> will be created for any HOST type arch that does not have a PROD_HOST_<osclass>
definition



4.6. MAKEFILE DEFINITIONS 61

4.6.23.2 Specifying product object file names

73]

Object files which have filenames with a “.0” or “.obj” suffix are defined as follows and can be specified without the
suffix but should have the directory prefix

USR_OBJS += <name>

Object files will be used in builds of all products and libraries
USR_OBJS_<osclass> += <name>

Object files will be used in builds of all products and libraries for archs with the specified osclass.
USR_OBJS_DEFAULT += <name>

Object files will be used in builds of all products and libraries for archs without a USR_OBJS_<osclass>
definition specified.

PROD_OBJS += <name>

Object files will be used in builds of all products
PROD_OBJS_<osclass> += <name>

Object files will be used in builds of all products for archs with the specified osclass.
PROD_OBJS_DEFAULT += <name>

Object files will be used in builds of all products for archs without a PROD_OBJS_<osclass> definition
specified.

<prodname>_0BJS += <name>

Object files will be used for all builds of the named product
<prodname>_0BJS_<osclass> += <name>

Object files will be used in builds of the named product for archs with the specified osclass.
<prodname>_0OBJS_DEFAULT += <name>

Object files will be used in builds of the named product for archs without a <prodname>_OBJS_<osclass>
definition specified.

Combined object files, from R3.13 built modules and applications which have file names that do not include a
“.0” or ”.obj” suffix (e.g. xyzLib) are defined as follows:

USR_OBJLIBS += <name>

Combined object files will be used in builds of all libraries and products.
USR_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of all libraries and products for archs of the specified osclass.
USR_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of all libraries and products for archs withouta USR_OBJLIBS_<osclass>
definition specified.

PROD_OBJLIBS += <name>
Combined object files will be used in builds of all products.
PROD_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of all products for archs of the specified osclass.



62 CHAPTER 4. BUILD FACILITY

PROD_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of all products for archs without a PROD_OBJLIBS_<osclass>
definition specified.

<prodname>_OBJLIBS += <name>

Combined object files will be used for all builds of the named product.
<prodname>_OBJLIBS_<osclass> += <name>

Combined object files will be used in builds of the named product for archs with the specified osclass.
<prodname>_OBJLIBS_DEFAULT += <name>

Combined object files will be used in builds of the named product for archs without a <prodname>_OBJLIBS_<osclass>
definition specified.

<prodname>_LDOBJS += <name>

Object files will be used for all builds of the named product. (deprecated)
<prodname>_LDOBJS_<osclass> += <name>

Object files will be used in builds of the name product for archs with the specified osclass. (deprecated)
<prodname>_LDOBJS_DEFAULT += <name>

Object files will be used in builds of the product for archs without a <prodname>_LDOBJS_<osclass>
definition specified. (deprecated)

4.6.23.3 Specifying product source file names

Source file names, which must have a suffix, are defined as follows:
SRCS += <name>
Source files will be used for all defined libraries and products.
SRCS_<osclass> += <name>
Source files will be used for all defined libraries and products for all archs of the specified osclass.
SRCS_DEFAULT += <name>

Source files will be used for all defined libraries and products for any arch that does not have a SRCS_<osclass>
definition

USR_SRCS += <name>

Source files will be used for all products and libraries.
USR_SRCS_<osclass> += <name>

Source files will be used for all defined products and libraries for all archs of the specified osclass.
USR_SRCS_DEFAULT += <name>

Source files will be used for all defined products and libraries for any arch that does not have a USR_SRCS_<osclass>
definition



4.6. MAKEFILE DEFINITIONS 63

PROD_SRCS += <name>

Source files will be used for all products.
PROD_SRCS_<osclass> += <name>

Source files will be used for all defined products for all archs of the specified osclass.
PROD_SRCS_DEFAULT += <name>

Source files will be used for all defined products for any arch that does not have a PROD_SRCS_<osclass>
definition

<prodname>_SRCS += <name>

Source file will be used for the named product.
<prodname>_SRCS_<osclass> += <name>

Source files will be used for named product for all archs of the specified osclass.
<prodname>_SRCS_DEFAULT += <name>

Source files will be used for named product for any arch that does not have a <prodname>_SRCS_<osclass>
definition

4.6.23.4 Specifying libraries to be linked when creating the product
For each library name specified which is not a system library nor a library from EPICS_BASE, a <name>_DIR
definition must be present in the Makefile to specify the location of the library.
Library names, which must not have a directory and “lib” prefix nor a suffix, are defined as follows:
PROD_LIBS += <name>
Libraries to be used when linking all defined products.
PROD_LIBS_<osclass> += <name>
Libraries to be used or all archs of the specified osclass when linking all defined products.
PROD_LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a PROD_LIBS_<osclass> definition when linking all
defined products.

USR_LIBS += <name>

Libraries to be used when linking all defined products.
USR_LIBS_<osclass> += <name>

Libraries to be used or all archs of the specified osclasswhen linking all defined products.
USR_LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a USR_LIBS_<osclass> definition when linking all
defined products.

<prodname>_LIBS += <name>

Libraries to be used for linking the named product.



64 CHAPTER 4. BUILD FACILITY

<prodname>_LIBS_<osclass> += <name>
Libraries will be used for all archs of the specified osclass for linking named product.
<prodname>_LIBS_DEFAULT += <name>

Libraries to be used for any arch that does not have a <prodname>_LIBS_<osclass> definition when
linking named product.

SYS_PROD_LIBS += <name>

System libraries to be used when linking all defined products.
SYS_PROD_LIBS_<osclass> += <name>

System libraries to be used for all archs of the specified osclass when linking all defined products.
SYS_PROD_LIBS_DEFAULT += <name>

System libraries to be used for any arch that does not have a PROD_LIBS_<osclass> definition when linking
all defined products.

<prodname>_SYS_LIBS += <name>

System libraries to be used for linking the named product.

<prodname>_SYS_LIBS_<osclass> += <name>
System libraries will be used for all archs of the specified osclass for linking named product.
<prodname>_SYS_LIBS_DEFAULT += <name>

System libraries to be used for any arch that does not have a <prodname>_LIBS_<osclass> definition
when linking named product.

4.6.23.5 The order of dependant libraries

Dependant library names appear in the following order on a product link line:
1. <prodname>_LIBS
. <prodname>_LIBS_<osclass> or <prodname>_LIBS_DEFAULT
. PROD_LIBS

. PROD_LIBS_<osclass>or PROD_LIBS_DEFAULT

2

3

4

5. USR_LIBS
6. USR_LIBS_<osclass>or USR_LIBS_DEFAULT

7. <prodname>_SYS_LIBS

8. <prodname>_SYS_LIBS_<osclass> or <prodname>_SYS_LIBS_DEFAULT
9. PROD_SYS_LIBS

10. PROD_SYS_LIBS_<osclass> or PROD_SYS_LIBS_DEFAULT

11. USR_SYS_LIBS

12. USR_SYS_LIBS_<osclass>orUSR_SYS_LIBS_DEFAULT



4.6. MAKEFILE DEFINITIONS 65

4.6.23.6 Specifying product version number

On WIN32 only a product version number can be specified as follows:
PROD_VERSION += <version>

This results in “/version:$(PROD_VERSION)” link option.

4.6.23.7 Product static builds

Product executables can be linked with either archive versions or shared versions of EPICS libraries. Shared ver-
sions of system libraries will always be used in product linking. The definition of STATIC_BUILD (YES/NO) in
base/configure/ CONFIG_SITE determines which EPICS libraries to use. When STATIC_BUILD is NO, shared li-
braries will be used. (SHARED_LIBRARIES must be set to YES.) The default definition for STATIC_BUILD in the
EPICS base CONFIG_SITE distribution file is NO. A STATIC_BUILD definition in a Makefile will override the def-
inition in CONFIG_SITE.Static builds may not be possible on all systems. For static builds, all nonsystem libraries
must have an archive version, and this may not be true form all libraries.

4.6.24 Test Products

Test products are product executables that are created but not installed into $ (INSTALL_LOCATION) /bin/<arch>
directories. Test product libraries, source, and object files are specified in exactly the same way as regular products.

Any of the following can be specified:
TESTPROD += <name>
Test product <name> will be created for every target arch.
TESTPROD_<osclass> += <name>
Test product <name> will be created for all archs of the specified osclass.
TESTPROD_DEFAULT += <name>

Test product <name> will be created for any arch that does not have a
TESTPROD_<osclass> definition

TESTPROD_IOC += <name>

Test product <name> will be created for IOC type archs.
TESTPROD_IOC_<osclass> += <name>

Test product <name> will be created for all IOC type archs of the specified osclass.
TESTPROD_IOC_DEFAULT += <name>

Test product <name> will be created for any IOC type arch that does not have a
TESTPROD_IOC_<osclass> definition

TESTPROD_HOST += <name>
Test product <name> will be created for HOST type archs.
TESTPROD_HOST_<osclass> += <name>

Test product <name> will be created for all HOST type archs of the specified osclass.



66 CHAPTER 4. BUILD FACILITY

TESTPROD_HOST_DEFAULT += <name>

Test product <name> will be created for any HOST type arch that does not have a
TESTPROD_HOST_<osclass> definition

4.6.25 Test Scripts

Test scripts are perl scripts whose names end in . t that get executed to satisfy the runtests make target. They are
run by the perl Test::Harness library, and should send output to stdout following the Test Anything Protocol. Any of
the following can be specified, although only TESTSCRIPTS_HOST is currently useful:

TESTSCRIPTS += <name>

Test script <name> will be created for every target arch.
TESTSCRIPTS_<osclass> += <name>

Test script <name> will be created for all archs of the specified osclass.
TESTSCRIPTS_DEFAULT += <name>

Test script <name> will be created for any arch that does not have a
TESTSCRIPTS_<osclass> definition

TESTSCRIPTS_IOC += <name>

Test script <name> will be created for IOC type archs.
TESTSCRIPTS_IOC_<osclass> += <name>

Test script <name> will be created for all IOC type archs of the specified osclass.
TESTSCRIPTS_IOC_DEFAULT += <name>

Test script <name> will be created for any IOC type arch that does not have a
TESTSCRIPTS_IOC_<osclass> definition

TESTSCRIPTS_HOST += <name>

Test script <name> will be created for HOST type archs.
TESTSCRIPTS_HOST_ <osclass> += <name>

Test script <name> will be created for all HOST type archs of the specified osclass.
TESTSCRIPTS_HOST_DEFAULT += <name>

Test script <name> will be created for any HOST type arch that does not have a
TESTSCRIPTS_HOST_<osclass> definition.

If a name in one of the above variables matches a regular executable program name (normally generated as a test
product) with “.t” appended, a suitable perl script will be generated that will execute that program directly; this
makes it simple to run programs that use the epicsUnitTest routines in 1ibCom. A test script written in Perl with a
name ending .plt will be copied into the O.<arch> directory with the ending changed to .t; such scripts will
usually use the perl Test::Simple or Test::More libraries.



4.6. MAKEFILE DEFINITIONS 67

4.6.26 Miscellaneous Targets

A definition of the form:
TARGETS += <name>

results in the file <name> being built in the O . <arch> directory from existing rules and files in the source directory.
These target files are not installed.

4.6.27 Installing Other Binaries

Definitions of the form:

BIN_INSTALLS += <name>

BIN_ INSTALLS += <dir>/<name>
BIN_INSTALLS_DEFAULT +4+= <name>
BIN_INSTALLS_<osclass> += <name>

will result in the named files being installed to the appropriate $ (INSTALL_LOCATION) /bin/<arch> directory.
The file <name> can appear with or without a directory prefix. If the file has a directory prefix e.g. $(EPICS_BASE_BIN),
it is copied from the specified location. If a directory prefix is not present, make will look in the source directory for
the file.

4.6.28 Installing Other Libraries

Definitions of the form:

LIB_INSTALLS += <name>
LIB_INSTALLS += <dir>/<name>
LIB_INSTALLS_DEFAULT += <name>
LIB_INSTALLS_<osclass> += <name>

result in files being installed to the appropriate $ (INSTALL_LOCATION) /1ib/<arch> directory. The file <name>
can appear with or without a directory prefix. If the file has a directory prefix e.g. $(EPICS_BASE_LIB), it is copied
from the specified location. If a directory prefix is not present, make will look in the source directory for the file.

4.6.29 Win32 resource files

Definitions of the form:

RCS += <name> Resource definition script files for all products and libraries.
RCS_<osclass> += <name>

PROD_RCS += <name> Resource definition script files for all products.
PROD_RCS_<osclass> += <name>
PROD_RCS_DEFAULT += <name>

LIB_RCS += <name> Resource definition script files for all libraries.
LIB_RCS_<osclass> += <name>
LIB_RCS_DEFAULT +4+= <name>

<name>_RCS += <name> Resource definition script files for specified product or library.
<name>_RCS_<osclass> += <name>
<name>_RCS_DEFAULT += <name>



68 CHAPTER 4. BUILD FACILITY

result in resource files (*.res files) being created from the specified *.rc resource definition script files and linked into
the prods and/or libraries.

4.6.30 TCL libraries

Definitions of the form:

TCLLIBNAME += <name>
TCLINDEX += <name>

result in the specified tcl files being installed to the $ (INSTALL_LOCATION) /1lib/<arch> directory.

4.6.31 Java class files

Java class files can be created by the javac tool into $(INSTALL_JAVA) or into the O.Common subdirectory, by
specifying the name of the java class file in the Makefile. Command line options for the javac tool can be specified.
The configuration files set the java c option “~sourcepath .:..:../..".

Any of the following can be specified:
JAVA += <name>. java
The <name>. java file will be used to create the <name>.class file in the S(INSTALL_JAVA) directory.
TESTJAVA += <name>. java
The <name>. java files will be used to create the <name>.class file in the 0. Common subdirectory.
USR_JAVACFLAGS += <name>

The javac option <name> will be used on the javac command lines.

4.6.31.1 Example 1
In this example, three class files are created in $(INSTALL_LOCATION)/javalib/mytest. The javac depreciation flag
is used to list the description of each use or override of a deprecated member or class.

JAVA = mytest/one.java

JAVA = mytest/two.java

JAVA = mytest/three.java

USR_JAVACFLAGS = -deprecation

4.6.31.2 Example 2

In this example, the test.class file is created in the O . Common subdirectory.

TESTJAVA = test.java



4.6. MAKEFILE DEFINITIONS 69

4.6.32 Java jar file

A single java jar file can be created using the java jar tool and installed into $(INSTALL_JAVA)
(i.e. $(INSTALL_LOCATION)/javalib) by specifying its name, and the names of its input files to be included in the
created jar file. The jar input file names must appear with a directory prefix.

Any of the following can be specified:
JAR += <name>
The <name> jar file will be created and installed into the $(INSTALL_JAVA) directory.
JAR_INPUT += <name>
Names of images, audio files and classes files to be included in the jar file.
JAR_MANIFEST += <name>
The preexisting manifest file will be used for the created jar file.
JAR_PACKAGES += <name>

Names of java packages to be installed and added to the created jar file.

4.6.32.1 Example 1
In this example, all the class files created by the current Makefile’s “JAVA+="" definitions, are placed into a file named
mytestl.jar. A manifest file will be automatically generated for the jar.

Note: $(INSTALL_CLASSES) is set to $(addprefix $(INSTALL_JAVA)/,$(CLASSES)) in the EPICS base configure
files.

JAR = mytest].jar
JAR_INPUT = $(INSTALL_CLASSES)

4.6.32.2 Example 2
In this example, three class files are created and placed into a new jar archive file named mytest2.jar. An existing
manifest file, mytest2.mf is put into the new jar file.

JAR = mytest2.jar

JAR_INPUT = $(INSTALL_JAVA)/mytest/one.class

JAR_INPUT = $(INSTALL_JAVA)/mytest/two.class

JAR_INPUT = $(INSTALL_JAVA)/mytest/three.class

JAR_MANIFEST = mytest2.mf

4.6.33 Java native method C header files

A C header files for use with java native methods will be created by the javah tool in the O.Common subdirectory
by specifying the name of the header file to be created. The name of the java class file used to generate the header
is derived from the name of the header file. Underscores (_) are used as a header file name delimiter. Command line
options for the javah tool can be specified.

Any of the following can be specified:



70 CHAPTER 4. BUILD FACILITY

JAVAINC += <name>.h
The <name> . h header file will be created in the O . Common subdirectory.
USR_JAVAHFLAGS += <name>

The javah option <name> will be used on the javah tool command line.

4.6.33.1 Example

In this example, the C header xx_yy_zz.h will be created in the $(COMMON _DIR) subdirectory from the class xx.yy.zz
(i.e. the java class file S(INSTALL_JAVA)/xx/yy/zz.class)). The option “-old” will tell javah to create old JDK1.0 style
header files.

JAVAINC = xx_yy_zz.h

USR_JAVAHFLAGS = -old

4.6.34 User Created CONFIG* and RULES* files

Module developers can now create new CONFIG and RULES* files ia a <t op> application source directory. These
new CONFIG* or RULES* files will be installed into the directory $(INSTALL_LOCATION)/cfg by including lines
like the following Makefile line:

CFG += CONFIG_MY1l RULES_MY1
The build will install the new files CONFIG_MY1 and RULES_MY1 into the $(INSTALL_LOCATION)/cfg directory.

Files in a $(INSTALL_LOCATION)/cfg directory are now included during a build by so that the definitions and rules
in them are available for use by later src directory Makefiles in the same module or by other modules with a RELEASE
line pointing to the TOP of this module.

4.6.35 User Created File Types

Module developers can now define a new type of file, e.g. ABC, so that files of type ABC will be installed into a
directory defined by INSTALL_ABC. This is done by creating a new CONFIG_<name> file, e.g. CONFIG_ABC,
with the following lines:

FILE_-TYPE += ABC
INSTALL_ABC = $(INSTALL_LOCATION)/abc

The INSTALL_ABC directory should be a subdirectory of $(INSTALL_LOCATION). The file type ABC should be
target architecture independent (alh files, medm files, edm files.

Optional rules necessary for files of type ABC should be put in a RULES_ABC file.

The module developer installs new CONFIG_ABC and RULES_ABC files for the new file type into the directory
$(INSTALL_LOCATION)/cfg by including the following Makefile line:

CFG += CONFIG_ABC RULES_ABC
Files of type ABC are installed into INSTALL_ABC directory by adding a line like the following to a Makefile.
ABC += <filenamel> <filename2> <filename3>

Since the files in $(INSTALL_LOCATION)/cfg directory are now included by the base config files, the ABC +=
definition lines are available for use by later src directory Makefiles in the same module or by other modules with a
RELEASE line pointing to the TOP of this module.



4.7. TABLE OF MAKEFILE DEFINITIONS

4.7 Table of Makefile definitions

71

Definitions given below containing <osclass> are used when building for target archs of a specific osclass, and the
<osclass> part of the name should be replaced by the desired osclass, e.g. solaris, vxWorks, etc. If a _DEFAULT
setting is given but a particular <osclass> requires that the default not apply and there are no items in the definition
that apply for that <osclass>, the value “~nil-" should be specified in the relevant Makefile definition.

Build Option

Description

Products to be built (host type archs only)

PROD
PROD_<osclass>
PROD_DEFAULT
PROD_IOC
PROD_IOC_<osclass>

PROD_IOC_DEFAULT

PROD_HOST
PROD_HOST_<osclass>

PROD_HOST_DEFAULT

Test products to be built

products (names without execution suffix) to build and install. Spec-
ify xyz to build executable xyz on Unix and xyz.exe on WIN32

os class specific products to build and install for <osclass> archs
only

products to build and install for archs with no PROD_<osclass>
specified

products to build and install for ioc type archs

os specific products to build and install for ioc type archs

products to build and install for ioc type arch systems with no
PROD_TIOC_<osclass> specified

products to build and install for host type archs.

os class specific products to build and install for <osclass> type
archs

products to build and install for arch with no
PROD_HOST_<osclass> specified

TESTPROD
TESTPROD_<osclass>
TESTPROD_DEFAULT

TESTPROD_IOC
TESTPROD_IOC_<osclass>
TESTPROD_IOC_DEFAULT

TESTPROD_HOST
TESTPROD_HOST_<osclass>

TESTPROD_HOST_DEFAULT

Test scripts to be built

test products (names without execution suffix) to build but not install
os class specific test products to build but not install

test products to build but not install for archs with no
TESTPROD_<osclass> specified

test products to build and install for ioc type archs

os specific test products to build and install for ioc type archs

test products to build and install for ioc type arch systems with no
TESTPROD_IOC_<osclass> specified

testproducts to build and install for host type archs.

os class specific testproducts to build and install for <osclass>
type archs

test products to build and install for arch with no
TESTPROD_HOST_<osclass> specified

TESTSCRIPTS
TESTSCRIPTS_<osclass>
TESTSCRIPTS_DEFAULT

TESTSCRIPTS_IOC
TESTSCRIPTS_IOC_<osclass>
TESTSCRIPTS_IOC_DEFAULT

TESTSCRIPTS_HOST
TESTSCRIPTS_HOST_<osclass>

TESTSCRIPTS_HOST_DEFAULT

Libraries to be built

test scripts (names with .t suffix) to build but not install

os class specific test scripts to build but not install

test scripts to build but not install for archs with no
TESTSCRIPTS_<osclass> specified

test scripts to build and install for ioc type archs

os specific test scripts to build and install for ioc type archs

test scripts to build and install for ioc type arch systems with no
TESTSCRIPTS_IOC_<osclass> specified

test scripts to build and install for host type archs.

os class specific testscripts to build and install for <osclass> type
archs

test scripts to build and install for arch with no
TESTSCRIPTS_HOST_<osclass> specified




72

CHAPTER 4. BUILD FACILITY

LIBRARY

LIBRARY_<osclass>

LIBRARY_DEFAULT

LIBRARY_IOC

LIBRARY_IOC_<osclass>

LIBRARY_TIOC_DEFAULT

LIBRARY_HOST

LIBRARY_HOST_<osclass>

LIBRARY_HOST_DEFAULT

SHARED_LIBRARIES

SHRLIB_VERSION
Loadable libraries to be built

name of library to build and install. The name should NOT include
a prefix or extension e.g. specify Ca to build libCa.a on Unix, Ca.lib
or Ca.dll on WIN32

os specific libraries to build and install

libraries to build and install for archs with no
LIBRARY_<osclass> specified

name of library to build and install for ioc type archs. The name
should NOT include a prefix or extension e.g. specify Ca to build
libCa.a on Unix, Ca.lib or Ca.dll on WIN32

os specific libraries to build and install for ioc type archs

libraries to build and install for ioc type arch systems with no
LIBRARY_IOC_<osclass> specified

name of library to build and install for host type archs. The name
should NOT include a prefix or extension, e.g. specify Ca to build
libCa.a on Unix, Ca.lib or Ca.dll on WIN32

os class specific libraries to build and install for host type archs
libraries to build and install for host type arch systems with no
LIBRARY_HOST_<osclass> specified

build shared libraries? Must be YES or NO

shared library version number

LOADABLE_LIBRARY
LOADABLE_LIBRARY_<osclass>
LOADABLE_LIBRARY_DEFAULT

LOADABLE_LIBRARY_ HOST

LOADABLE_LIBRARY_HOST_<osclass>
LOADABLE_LIBRARY_HOST_DEFAULT

Combined object files (vxWorks only)

name of loadable library to build and install. The name should NOT
include a prefix or extension e.g. specify Ca to build libCa.so on
Unix and Ca.dll on WIN32

os specific loadable libraries to build and install

loadable libraries to build and install for archs with no
LOADABLE_LIBRARY_<osclass> specified

name of loadable library to build and install for host type archs. The
name should NOT include a prefix or extension, e.g. specify test to
build libtest.so on Unix and test.dll on WIN32

os class specific loadable libraries to build and install for host type
archs

loadable libraries to build and install for host type arch systems with
no LOADABLE_LIBRARY_HOST_<osclass> specified

OBJLIB

OBJLIB_vxWorks
OBJLIB_SRCS
OBJLIB_OBJS

Product and library source files

name of a combined object file library and corresponding munch file
to build and install. The name will have a Library suffix appended
same as OBJLIB

source files to build the OBJLIB

object files to include in OBJLIB

SRCS
SRCS_<osclass>
SRCS_DEFAULT

USR_SRCS
USR_SRCS_<osclass>
USR_SRCS_DEFAULT

PROD_SRCS
PROD_SRCS_<osclass>
PROD_SRCS_DEFAULT

source files to build all PRODs and LIBRARYs

osclass specific source files to build all PRODs and LIBRARY's
source file to build all PRODs and LIBRARYs for archs with no
SRCS_<osclass> specified

source files to build all PRODs and LIBRARY's

osclass specific source files to build all PRODs and LIBRARY's
source file to build all PRODs and LIBRARYSs for archs with no
SRCS_<osclass> specified

source files to build all PRODs

osclass specific source files to build all PRODs

source files needed to build PRODs for archs with no
SRCS_<osclass> specified



4.7. TABLE OF MAKEFILE DEFINITIONS

LIB_SRCS
LIB_SRCS_<osclass>
LIB_SRCS_DEFAULT

LIBSRCS
LIBSRCS_<osclass>
LIBSRCS_DEFAULT

<name>_SRCS
<name>_SRCS_<osclass>

<name>_SRCS_DEFAULT

Product and library object files

73

source files for building LIBRARY (e.g. LIB_SRCS=la.c lb.c Ic.c)
os-specific library source files

library source files for archs with no LIB_SRCS_<osclass>
specified

source files for building LIBRARY (deprecated)

os-specific library source files (deprecated)

library source files for archs with no LIBSRCS_<osclass> spec-
ified (deprecated)

source files to build a specific PROD or LIBRARY

os specific source files to build a specific PROD or LIBRARY
source files needed to build a specific PROD or LIBRARY for archs
with no <prod>_SRCS_<osclass> specified

USR_OBJS

USR_OBJS_<osclass>

USR_OBJS_DEFAULT

PROD_OBJS
PROD_OBJS_<osclass>

PROD_OBJS_DEFAULT

LIB_OBJS

LIB_OBJS_<osclass>
LIB_OBRJS_DEFAULT

<name>_0BJS

<name>_O0OBJS_<osclass>

<name>_O0OBJS_DEFAULT

Product and library R3.13 combined object files

object files, specified without suffix, to build all PRODs and LI-
BRARYs

osclass specific object files, specified without suffix, to build all
PRODs and LIBRARYSs

object files, specified without suffix, needed to build PRODs and
LIBRARYS for archs with no OBJS_<osclass> specified

object files, specified without suffix, to build all PRODs

osclass specific object files, specified without suffix, to build all
PRODs

object files, specified without suffix, needed to build PRODs for
archs with no OBJS_<osclass> specified

object files, specified without suffix, for building all LIBRARYS (e.g.
LIB_OBJS+=$(AB_BIN)/la $(AB_BIN)/Ib)

os-specific library object files, specify without suffix,

library object files, specified without suffix, for archs with no
LIB_OBJS_<osclass> specified

object files, specified without suffix, to build a specific PROD or
LIBRARY

os specific object files, specified without suffix, to build a specific
PROD or LI|BRARY

object files, without suffix, needed to build a specific PROD or LI-
BRARY for archs with no <prod>_0BJS_<osclass> specified

USR_OBJLIBS

USR_OBJLIBS_<osclass>

USR_OBJLIBS_DEFAULT

PROD_OBJLIBS

PROD_OBJLIBS_<osclass>

PROD_OBJLIBS_DEFAULT

combined object files with filenames that do not have a suf-
fix, needed for building all PRODs and LIBRARYs (e.g.
USR_OBJLIBS+=$(XYZ_BIN)/xyzLib)

os-specific combined object files with filenames that do not have a
suffix for building all PRODs and LIBRARY's

combined object files with filenames that do not have a suffix, for
archs with no USR_OBJLIBS_<osclass> specified for building
all PRODs and LIBRARY's

combined object files with filenames that do not
have a suffix, needed for building all PRODs (e.g.
PROD_OBJLIBS+=$(XYZ_BIN)/xyzLib)

os-specific combined object files with filenames that do not have a
suffix for building all PRODs

combined object files with filenames that do not have a suffix, for
archs with no PROD_OBJLIBS_<osclass> specified for build-
ing all PRODs



74

LIB_OBJLIBS

LIB_OBJLIBS_<osclass>

LIB_OBJLIBS_DEFAULT

<name>_O0OBJLIBS
<name>_OBJLIBS_<osclass>

<name>_OBJLIBS_DEFAULT

<name>_LDOBJS
<name>_TLDOBJS_<osclass>

<name>_LDOBJS_DEFAULT

Product and library dependant libraries

CHAPTER 4. BUILD FACILITY

combined object files with filenames that do not have
a suffix, needed for building all LIBRARYs (e.g.
LIB_OBJLIBS+=$(XYZ_BIN)/xyzLib)

os-specific combined object files with filenames that do not have a
suffix for building all LIBRARY's

combined object files with filenames that do not have a suffix, for
archs with no LIB_OBJLIBS_<osclass> specified for building
all LIBRARY

combined object files with filenames that do not have a suffix, needed
to build a specific PROD or LIBRARY

os specific combined object files with filenames that do not have a
suffix, to build a specific PROD or LI|BRARY

combined object files with filenames that do not have a suffix,
needed to build a specific PROD or LIBRARY for archs with no
<name>_OBJLIBS_<osclass> specified

combined object files with filenames that do not have a suffix, needed
to build a specific PROD or LIBRARY (deprecated)

os specific combined object files with filenames that do not have a
suffix, to build a specific PROD or LI|BRARY (deprecated)
combined object files with filenames that do not have a suffix,
needed to build a specific PROD or LIBRARY for archs with no
<name>_LDOBJS_<osclass> specified (deprecated)

<name>_DIR

USR_LIBS
USR_LIBS_<osclass>
USR_LIBS_DEFAULT

<name>_LIBS

<name>_LIBS_<osclass>
<name>_LIBS_DEFAULT

PROD_LIBS
PROD_LIBS_<osclass>
PROD_LIBS_DEFAULT

LIB_LIBS
LIB_LIBS <osclass>

LIB_LIBS_DEFAULT

USR_SYS_LIBS
USR_SYS_LIBS_<osclass>
USR_SYS_LIBS_DEFAULT

<name>_SYS_LIBS
<name>_SYS_LIBS_<osclass>
<name>_SYS_LIBS_DEFAULT

PROD_SYS_LIBS
PROD_SYS_LIBS_<osclass>

directory to search for the specified lib. (For libs listed in all
PROD_LIBS, LIB_LIBS, <name>_LIBS and USR_LIBS listed
below)System libraries do not need a <name>_d1i r definition.
load libraries (e.g. Xt X11) for all products and libraries

os specific load libraries for all makefile links

load libraries for systems with no USR_LIBS_<osclass> speci-
fied libs

named prod or library specific 1d libraries (e.g. probe_LIBS=X11
Xt)

os-specific libs needed to link named prod or library

libs needed to link named prod or library for systems with no
<name>_LIBS_<osclass> specified

libs needed to link every PROD

os-specific libs needed to link every PROD

libs needed to link every PROD for archs with no
PROD_LIBS_<osclass> specified

libraries to be linked with every library being created

os class specific libraries to be linked with every library being cre-
ated

libraries to be linked with every library being created for archs with
no LIB_LIBS_<osclass> specified

system libraries (e.g. Xt X11) for all products and libraries

os class specific system libraries for all makefile links

system libraries for archs with no USR_SYS_LIBS_<osclass>
specified

named prod or library specific system 1d libraries

os class specific system libs needed to link named prod or library
system libs needed to link named prod or library for systems with no
<name>_SYS_LIBS_<osclass> specified

system libs needed to link every PROD

os class specific system libs needed to link every PROD



4.7. TABLE OF MAKEFILE DEFINITIONS

PROD_SYS_LIBS_DEFAULT

LIB_SYS_LIBS
LIB_SYS_LIBS_<osclass>

LIB_SYS_LIBS_DEFAULT
SYS_PROD_LIBS
SYS_PROD_LIBS_<osclass>

SYS_PROD_LIBS_DEFAULT

Compiler flags

75

system libs needed to link every PROD for archs with no
PROD_SYS_LIBS_<osclass> specified

system libraries to be linked with every library being created

os class specific system libraries to be linked with every library being
created

system libraries to be linked with every library being created for
archs with no LIB_SYS_LIBS_<osclass> specified

system libs needed to link every PROD for all systems (deprecated)
os class specific system libs needed to link every PROD (deprecated)
system libs needed to link every PROD for systems with no
SYS_PROD_LIBS_<osclass> specified (deprecated)

USR_CFLAGS
USR_CFLAGS_<T_A>
USR_CFLAGS_<osclass>
USR_CFLAGS_DEFAULT

<name>_CFLAGS
<name>_CFLAGS_<T_A>
<name>_CFLAGS_<osclass>
USR_CXXFLAGS

USR_CXXFLAGS_<T_A>
USR_CXXFLAGS_<osclass>
USR_CXXFLAGS_DEFAULT
<name>_CXXFLAGS
<name>_CXXFLAGS_<T_A>
<name>_CXXFLAGS_<osclass>
USR_CPPFLAGS
USR_CPPFLAGS_<T_A>
USR_CPPFLAGS_<osclass>
USR_CPPFLAGS_DEFAULT
<name>_CPPFLAGS
<name>_CPPFLAGS_<T_A>
<name>_CPPFLAGS_<osclass>
USR_INCLUDES
USR_INCLUDES_<osclass>
USR_INCLUDES_DEFAULT
<name>_INCLUDES
<name>_INCLUDES_<T_A>
<name>_INCLUDES_<osclass>

HOST_WARN

CROSS_WARN

C compiler flags for all systems

target architecture specific C compiler flags

os class specific C compiler flags

C compiler flags for archs with no USR_CFLAGS_<osclass>
specified

file specific C compiler flags (e.g. xxxRecord_CFLAGS=-g)

file specific C compiler flags for a specific target architecture

file specific C compiler flags for a specific os class

C++ compiler flags for all systems (e.g. xyxMain_ CFLAGS=-
DSDDS)

target architecture specific C++ compiler flags

os-specific C++ compiler flags

C++ compiler flags for systems with no
USR_CXXFLAGS_<osclass> specified

file specific C++ compiler flags

file specific C++ compiler flags for a specific target architecture

file specific C++ compiler flags for a specific osclass

C pre-processor flags (for all makefile compiles)

target architecture specific cpp flags

os specific cpp flags

cpp flags for systems with no USR_CPPFLAGS_<osclass> spec-
ified

file specific C pre-processor flags(e.g. xxxRecord CPPFLAGS=-
DDEBUG)

file specific cpp flags for a specific target architecture

file specific cpp flags for a specific os class

directories, with -I prefix, to search for include files(e.g. -
I$(EPICS_EXTENSIONS_INCLUDE))

directories, with -I prefix, to search for include files for a specific os
class

directories, with -I prefix, to search for include files for systems with
no <name>_INCLUDES_<osclass> specified

directories, with -I prefix, to search for include files when building a
specific object file (e.g. -I$(MOTIF_INC))

file specific directories, with -1 prefix, to search for include files for
a specific target architecture

file specific directories, with -1 prefix, to search for include files for
a specific os class

Are compiler warning messages desired for host type builds? (YES
or NO) (default is YES)

C cross-compiler warning messages desired (YES or NO) (default
YES)



76

HOST_OPT
CROSS_OPT
CMPLR

CXXCMPLR
Linker options

CHAPTER 4. BUILD FACILITY

Is host build compiler optimization desired (default is NO optimiza-
tion)

Is cross-compiler optimization desired (YES or NO) (default is NO
optimization)

C compiler selection, TRAD, ANSI or STRICT (default is STRICT)
C++ compiler selection, NORMAL or STRICT (default is STRICT)

USR_LDFLAGS
USR_LDFLAGS_<osclass>
USR_LDFLAGS_DEFAULT

PROD_LDFLAGS
PROD_ILDFLAGS_<osclass>
PROD_LDFLAGS_DEFAULT

LIB_LDFLAGS
LIB_LDFLAGS_<osclass>
LIB_LDFLAGS_DEFAULT
<name>_LDFLAGS
<name>_ILDFLAGS_<osclass>
<name>_LDFLAGS_DEFAULT

STATIC_BUILD

Header files to be installed

linker options (for all makefile links)

os specific linker options (for all makefile links)

linker options for systems with no USR_LDFLAGS_<osclass>
specified

prod linker options

os specific prod linker options

prod linker options for systems with no
PROD_LDFLAGS_<osclass> specified

library linker options

os specific library linker options

library linker options for systems with no
LIB_LDFLAGS_<osclass> specified

prod or library specific linker options

prod or library specific linker flags for a specific os class

linker options for systems with no
<name>_LDFLAGS_<osclass> specified

Is static build desired (YES or NO) (default is NO). On win32 if
STATIC_BUILD=YES then set SHARED_LIBRARIES=NO)

INC
INC_<osclass>

INC_DEFAULT
Perl, csh, tcl etc. script installation

list of include files to install into S(INSTALL_DIR)/include

0s specific includes to installed under
$ (INSTALL_DIR) /include/os/<osclass>

include files to install where no INC_<osclass> is specified

SCRIPTS
SCRIPTS_<osclass>
SCRIPTS_DEFAULT

SCRIPTS_IOC
SCRIPTS_IOC_<osclass>
SCRIPTS_IOC_DEFAULT

SCRIPTS_HOST
SCRIPTS_HOST_<osclass>
SCRIPTS_HOST_DEFAULT

scripts to install for all systems

os-specific scripts to install

scripts to install for systems with no SCRIPTS_<osclass> spec-
ified

scripts to install for ioc type archs.

os specific scripts to install for ioc type archs

scripts to install for ioc type arch systems with no
SCRIPTS_IOC_<osclass> specified

scripts to install for host type archs. T

os class specific scripts to install for host type archs

scripts to install for host type arch systems with no
OBJS_HOST_<osclass> specified

TCLLIBNAME list of tel scripts to install into
$ (INSTALL_DIR) /lib/<osclass> (Unix hosts only)

TCLINDEX name of tcl index file to create from TCLLIBNAME scripts

Object files The names in the following OBJS definitions should NOT include a
suffix (.o or.obj).

OBJS object files to build and install for all system.

OBJS_<osclass>
OBJS_DEFAULT

OBJS_1IOC
OBJS_IOC_<osclass>

os-specific object files to build and install.

object files to build and install for systems with no
OBJS_<osclass> specified.

object files to build and install for ioc type archs.

os specific object files to build and install for ioc type archs



4.7. TABLE OF MAKEFILE DEFINITIONS

OBJS_IOC_DEFAULT

OBJS_HOST
OBJS_HOST_<osclass>
OBJS_HOST_DEFAULT

77

object files to build and install for ioc type arch systems with no
OBJS_IOC_<osclass> specified

object files to build and install for host type archs. T

os class specific object files to build and install for host type archs
object files to build and install for host type arch systems with no
OBJS_HOST_<osclass> specified

Documentation

DOCS text files to be installed into the $(INSTALL _DIR)/doc directory

HTMLS_DIR name install Hypertext directory name i.e. $(IN-
STALL_DIR)/html/$(HTMLS _DIR)

HTMLS hypertext files to be installed into the  $(IN-

TEMPLATES_DIR

STALL_DIR)/html/$(HTMLS _DIR) directory
template directory to be created as $(IN-
STALL_DIR)/templates/$(TEMPLATE_DIR)

TEMPLATES template files to be installed into $(TEMPLATE_DIR)

Database Definition files

DBD database definition files to be installed or created and installed into
$(INSTALL_DBD).

DBDINC names, without suffix, of menus or record database definitions and

USR_DBDFLAGS

DBD_INSTALLS

Database Files

headers to be installed or created and installed.

optional flags for dbExpand. Currently only include path
(-I <path>) and macro substitution (-S <substitution>)
are supported.

files from specified directory to install into $(INSTALL_DBD) (e.g.
DBD_INSTALLS = $(APPNAME)/dbd/test.dbd

DB
DB_INSTALLS

USR_DBFLAGS
Options for other programs

database files to be installed or created and installed into $(IN-
STALL_DB).

files from specified directory to install into $INSTALL_DB) (e.g.
DB_INSTALLS = $(APPNAME)/db/test.db

optional flags for msi (EPICS Macro Substitution Tool)

YACCOPT

LEXOPT

SNCFLAGS

<name>_SNCFLAGS

E2DB_FLAGS

SCH2EDIF_FLAGS

RANLIBFLAGS

USR_ARFLAGS

Facilities for building Java programs

yacc options

lex options

state notation language, snc, options

product specific state notation language options
e2db options

sch2edif options

ranlib options

ar options

JAVA

TESTJAVA
JAVAINC

JAR

JAR_INPUT
JAR_MANIFEST
USR_JAVACFLAGS
USR_JAVAHFLAGS

Facilities for Windows 95/NT resource ( .rc) files

names of Java source files to be built and installed

names of Java source files to be built

names of C header file to be created in O . Common subdirectory
name of Jar file to be built

names of files to be included in JAR

name of manifest file for JAR

javac tool options

javah tool options

RCS

RCS_<osclass>

resource files (<name>. rc) needed to build every PROD and LI-
BRARY

resource files (<name> . rc) needed to build every PROD and LI-
BRARY for ioc type archs



78

RCS_DEFAULT
<name>_RCS
<name>_RCS_<osclass>

<name>_RCS_DEFAULT

Other definitions:

CHAPTER 4. BUILD FACILITY

resource files needed to build every PROD and LIBRARY for ioc
type arch systems with no RCS_<osclass> specified

resource files needed to build a specific PROD or LIBRARY

os specific resource files to build a specific PROD or LIBRARY
resource files needed to build a specific PROD or LIBRARY for ioc
type arch systems with no RCS_<osclass> specified

USR_VPATH
BIN_INSTALLS

BIN_INSTALLS_<osclass>

BIN_INSTALLS_DEFAULT

LIB_INSTALLS
LIB_INSTALLS_<osclass>

LIB_INSTALLS_DEFAULT

TARGETS
INSTALL_LOCATION

4.8 Configuration Files

4.8.1 Base Configure Directory

list of directories

files from specified directories to be installed into $(INSTALL_BIN)
(e.g. BINLINSTALLS = $(EPICS_BASE _BIN)/aiRecord$(OBJ))

os class specific files from specified directories to be installed into
$(INSTALL_BIN)

files from specified directories to be installed into $(INSTALL_BIN)
for target archs with no BIN_INSTALLS_<osclass> specified
files from specified directories to be installed into $(INSTALL_LIB)
os class specific files from specified directories to be installed into
$(INSTALL_LIB)

files from specified directories to be installed into $(INSTALL_LIB)
for target archs with no LIB_INSTALLS_<osclass> specified
files to create but not install

installation directory (defaults to $(TOP))

The base/configure directory has the following directory structure:

base/
configure/
os/
tools/

4.8.2 Base Configure File Descriptions

The configure files contain definitions and make rules to be included in the various makefiles.

CONFIG.CrossCommon

Definitions for all hosts and all targets for a cross build (host different than target).

CONFIG.gnuCommon

Definitions for all hosts and all targets for builds using the gnu compiler.

CONFIG_ADDONS

Definitions which setup the variables that have <osclass> and DEFAULT options.

CONFIG_APP_INCLUDE

Definitions to generate include, bin, lib, perl module, db, and dbd directory definitions for RELEASE <t op>s.



4.8. CONFIGURATION FILES 79

CONFIG_BASE
EPICS base specific definitions.
CONFIG_BASE_VERSION

Definitions for the version number of EPICS base. This file is used for creating epicsVersion.h which is installed
into base/include.

CONFIG_COMMON
Definitions common to all builds.
CONFIG_ENV

Default definitions of the EPICS environment variables. This file is used for creating envData.c which is included
in the Com library.

CONFIG_FILE_TYPE
Definitions to allow user created file types.
CONFIG_SITE

File in which you add to or modify make variables in EPICS base. A definition commonly overridden is
CROSS_COMPILER_TARGET_ARCHS

CONFIG_SITE_ENV

Defaults for site specific definitions of EPICS environment variables. This file is used for creating envData.c
which is included in the Com library.

CONFIG

Include statements for all the other configure files. You can override any definitions in other CONFIG* files by
placing override definitions at the end of this file.

RELEASE

Specifies the location of external products such as Tornado II and external <t ops> such as EPICS base.
RULES

This file just includes the appropriate rules configuration file.
RULES.Db

Rules for building and installing database and database definition files. Databases generated from templates
and/or CapFast schematics are supported.

RULES.ioc
Rules which allow building in the 1 ocBoot /<iocname> directory of a makeBaseApp created ioc application.
RULES_ARCHS
Definitions and rules which allow building the make target for each target architecture.
RULES_BUILD
Build rules for the Makefiles
RULES_DIRS

Definitions and rules which allow building the make targets in each subdirectory. This file is included by
Makefiles in directories with subdirectories to be built.



80 CHAPTER 4. BUILD FACILITY

RULES_EXPAND
Definitions and rules to use expandVars.pl to expand @ VAR @ variables in a file.
RULES_FILE_TYPE

Definitions and rules to allow user created CONFIG* and RULES* files and rules to allow user created file
types.

RULES_JAVA Definitions and rules which allow building java class files and java jar files.
RULES_TARGET

Makefile code to create target specific dependency lines for libraries and product targets.
RULES_TOP

Rules specific to a <t op> level directory e.g. uninstall and tar. It also includes the RULES_DIRS file.

Makefile Definitions to allow creation of CONFIG_APP_INCLUDE and installation of the CONFIG* files into
me$(INSTALL_LOCATION)dﬁmﬁmy.

4.8.3 Base configure/os File Descriptions

The configure/os directory contains os specific make definitions. The naming convention for the files in this directory
is CONFIG.<host>.<target> where <host> is either the arch for a specific host system or Common for all
supported host systems and <target> is either the arch for a specific target system or Common for all supported
target systems.

For example, the file CONFIG.Common.vxWorks-pentium will contain make definitions to be used for builds on all
host systems when building for a vx Works-pentium target system.

Also, if a group of host or target files have the same make definitions these common definitions can be moved to
a new file which is then included in each host or target file. An example of this is all Unix hosts which have
common definitions in a CONFIG.UnixCommon.Common file and all vxWorks targets with definitions in CON-
FIG.Common.vxWorksCommon.

The base/configure/os directory contains the following os-arch specific definitions

CONFIG.<host>.<target>

Specific host-target build definitions
CONFIG.Common.<target>

Specific target definitions for all hosts
CONFIG.<host>.Common

Specific host definitions for all targets
CONFIG.UnixCommon.Common

Definitions for Unix hosts and all targets
CONFIG.<host>.vxWorksCommon

Specific host definitions for all vx targets
CONFIG_COMPAT

R3.13 arch compatibility definitions
CONFIG_SITE.<host>.<target>

Site specific host-target definitions



4.9. BUILD DOCUMENTATION FILES 81

CONFIG_SITE.Common.<target>
Site specific target definitions for all hosts
CONFIG_SITE.<host>.Common

Site specific host definitions for all targets

4.8.4 Base src/tools File Descriptions
The src/tools directory contains Perl script tools used for the build. The are installed by the build into
$ (INSTALL_LOCATION) /bin/$ (T_A) for Host type target archs. The tools currently in this directory are:

convertRelease.pl This Perl script does consistency checks for the external <t op> definitions in the RELEASE file.
This script also creates envPaths, cdCommands, and dllPath.bat files for vk Works and other IOCs.

cvsclean.pl This perl script finds and deletes cvs #* files in all directories of the directory tree.

dos2unix.pl This perl script converts text file in DOS CR/LF format to unix ISO format.

expandVars.pl This perl tool expands @VAR@ variables while copying a file.

filterWarnings.pl This is a perl script that filters compiler warning output (for HP-UX).

fullpathname.pl This perl script returns the fullpathname of a file.

installEpics.pl This is a Perl script that installs build created files into the install directories.
makeDbDepends.pl This perl script searches .substitutions and .template files for entries to create a DEPENDS file.
makelncludeDbd.pl This perl script creates an include dbd file from file names

makeMakefile.pl This is a perl script that creates a Makefile in the created O . <arch> directories.
makeTestfile.pl This perl script generates a file $target.t which executes a real test program in the same directory.
mkmf.pl This perl script generates include file dependencies for targets from source file include statements.

munch.pl This is a perl script that creates a ctdt.c file for vxWorks target arch builds which lists the c++ static
constructors and destructors. See munching in the vxWorks documentation for more information.

replaceVAR.pl This is a perl script that changes VAR(xxx) style macros in CapFast generated databases into the
$(xxx) notation used in EPICS databases.

useManifestTool.pl This tools uses MS Visual C++ compiler version number to determine if we want to use the
Manifest Tool (status=1) or not (status=0).

4.9 Build Documentation Files

4.9.1 Base Documentation Directory

The base/documentation directory contains README files to help users setup and build epics/base.

4.9.2 Base Documentation File Descriptions

The files currently in the base/documentation directory are:
README.1st Instructions for setup and building epics base
README.html html version of README.1st



82 CHAPTER 4. BUILD FACILITY

README.MS_WINDOWS Microsoft WIN32 specific instructions
README.niCpu030 NI cpu030 specific instructions
README.hpux HPUX 11 (hpux-parisc) specific instructions
README.cris Cris architecture specific instructions
README.tru64unix Tru64Unix/Alpha specific instructions
README.darwin.html Installation notes for Mac OS X (Darwin)

BuildingR3.13AppsWithR3.14.html Describes how to modify a R3.13 vxWorks application so that it builds with
release R3.14.1.

ConvertingR3.13AppsToR3.14.html Describes how to convert a R3.13 vxWorks application so that it contains a
R3.14 configure directory and R3.14 Makefiles and builds with R3.14.1.

ConvertingR3.14.0alpha2AppsTobetal.html Describes how to modify a R3.14.0alphal application so that it builds
with release R3.14.0betal.

ConvertingR3.14.0betal AppsTobeta2.html Describes how to modify a R3.14.0betal application so that it builds
with release R3.14.0beta2.

ConvertingR3.14.0beta2AppsToR3.14.1.html Describes how to modify a R3.14.0beta2 application so that it builds
with release R3.14.1.

ConvertingR3.14.*AppsToR3.14.*.html Describes how to modify a R3.14.* application so that it builds with next
release after R3.14.*.

BuildingR3.13ExtensionsWithR3.14.html Describes how to modify a R3.13 extension so that it builds with release
R3.14.1.

RELEASE _NOTES.html Describes changes in the R3.14.1 release
KnownProblems.html List of known problems in EPICS base R3.14.1.

ReleaseChecklist.html Checklist of things that must be done when creating a new release of EPICS Base.

4.10 Startup Files

4.10.1 Base Startup Directory

The base/startup directory contains scripts to help users set the required environment variables and path. The appro-
priate startup files should be executed before any EPICS builds.

4.10.2 Base Startup File Descriptions

The scripts currently in the base/startup directory are:

EpicsHostArch c shell script to set EPICS_HOST_ARCH environment variable

EpicsHostArch.pl perl script to set EPICS_HOST_ARCH environment variable

Site.profile Unix bourne shell script to set path and environment variables

Site.cshre Unix c shell script to set path and environment variables

cygwin.bat WIN32 bat file to set path and environment variables for building with cygwin gcc/g++ compilers

win32.bat WIN32 bat file to set path and environment variables for building with MS Visual C++ compilers



Chapter 5

Database Locking, Scanning, And
Processing

5.1 Overview

Before describing particular components of the IOC software, it is helpful to give an overview of three closely related
topics: Database locking, scanning, and processing. Locking is done to prevent two different tasks from simulta-
neously modifying related database records. Database scanning is the mechanism for deciding when records should
be processed. The basics of record processing involves obtaining the current value of input fields and outputting the
current value of output fields. As records become more complex so does the record processing.

One powerful feature of the DATABASE is that records can contain links to other records. This feature also causes
considerable complication. Thus, before discussing locking, scanning, and processing, record links are described.

5.2 Record Links

A database record may contain links to other records. Each link is one of the following types:
e INLINK
e OUTLINK
INLINKSs and OUTLINKS can be one of the following:
e constant link
Not discussed in this chapter
e database link
A link to another record in the same I0C.
e channel access link

A link to a record in another IOC. It is accessed via a special IOC client task. It is also possible to force a
link to be a channel access link even it references a record in the same I0C.

e hardware link

Not discussed in this chapter

83



84 CHAPTER 5. DATABASE LOCKING, SCANNING, AND PROCESSING

e FWDLINK

A forward link refers to a record that should be processed whenever the record containing the forward link is
processed. The following types are supported:

e constant link

Ignored.
e database link

A link to another record in the same IOC.
e channel access link

A link to a record in another IOC or a link forced to be a channel access link. Unless the link references
the PROC field it is ignored. If it does reference the PROC field a channel access put with a value of 1 is
issued.

Links are defined in file 1ink.h.

NOTE: This chapter discusses mainly database links.

5.3 Database Links

Database links are referenced by calling one of the following routines:
e dbGetLink: The value of the field referenced by the input link retrieved.
e dbPutLink: The value of the field referenced by the output link is changed.
e dbScanPassive: The record referred to by the forward link is processed if it is passive.

A forward link only makes sense when it refers to a passive record that should be processed when after record contain-
ing the link. For input and output links, however, two other attributes can be specified by the application developer:
process passive, and maximize severity.

5.3.1 Process Passive

The Process Passive attribute takes the value NPP (Non-Process Passive) or PP (Process Passive). It determines if the
linked record should be processed before getting a value from an input link or after writing a value to an output link.
The linked record will be processed only if link’s Process Passive attribute is PP and the target record’s SCAN field is
Passive.

NOTE: Three other options may also be specified: CA, CP, and CPP. These options force the link to be handled like a
Channel Access Link. See last section of this chapter for details.

5.3.2 Maximize Severity

The Maximize Severity attribute is one of NMS (Non-Maximize Severity), MS (Maximize Severity), MSS (Maximize
Status and Severity) or MST (Maximize Severity if Invalid). It determines whether alarm severity is propagated across
links. If the attribute is MST only a severity of INVALID_ALARM is propagated; settings of MS or MSS propagate all
alarms that are more severe than the record’s current severity. For input links the alarm severity of the record referred to
by the link is propagated to the record containing the link. For output links the alarm severity of the record containing
the link is propagated to the record referred to by the link. If the severity is changed the associated alarm status is set
to LINK_ALARM, except if the attribute is MSS when the alarm status will be copied along with the severity.



5.4. DATABASE LOCKING 85

The method of determining if the alarm status and severity should be changed is called “maximize severity”. In
addition to its actual status and severity, each record also has a new status and severity. The new status and severity
are initially 0, which means NO_ALARM. Every time a software component wants to modify the status and severity,
it first checks the new severity and only makes a change if the severity it wants to set is greater than the current new
severity. If it does make a change, it changes the new status and new severity, not the current status and severity. When
database monitors are checked, which is normally done by a record processing routine, the current status and severity
are set equal to the new values and the new values reset to zero. The end result is that the current alarm status and
severity reflect the highest severity outstanding alarm. If multiple alarms of the same severity are present the alarm
status reflects the first one detected.

5.4 Database Locking

The purpose of database locking is to prevent a record from being processed simultaneously by two different tasks. In
addition, it prevents “outside” tasks from changing any field while the record is being processed.

The following routines are provided for database locking.

dbScanLock (precord) ;
dbScanUnlock (precord) ;

The basic idea is to call dbScanLock before accessing database records and calling dbScanUnlock afterwords.
Because of database links (Input, Output, and Forward) a modification to one record can cause modification to other
records. Records linked together with database links are placed in the same lock set. dboScanLock locks the entire
lock set, not just the record requested. dbScanUnlock unlocks the entire set.

The following rules determine when the lock routines must be called:
1. The periodic, I/O event, and event tasks lock before and unlock after processing:
2. dbPutField locks before modifying a record and unlocks afterwards.
3. dbGetField locks before reading and unlocks afterwards.
4

. Any asynchronous record support completion routine must lock before modifying a record and unlock after-
wards.

All records connected by any kind of database link are placed in the same lock set. Versions of EPICS Base prior to
R3.14 allowed an NPP NMS input link to span two different lock sets, but this was not safe where the read and write
operations on the field value were not atomic in nature and is no longer available to break a lockset.

5.5 Database Scanning

Database scanning refers to requests that database records be processed. Four types of scanning are possible:
1. Periodic - Records are scanned at regular intervals.
2. I/O event - A record is scanned as the result of an I/O interrupt.
3. Event - A record is scanned as the result of any task issuing a post_event request.
4

. Passive - A record is scanned as a result of a call to dbScanPassive. dbScanPassive will issue a record
processing request if and only if the record is passive and is not already being processed.

A dbScanPassive request results from a task calling one of the following routines:

e dbScanPassive: Only record processing routines, doGetLink, dbPutLink,and dbPutFieldcalldbScanPassive.
Record processing routines call it for each forward link in the record.



86 CHAPTER 5. DATABASE LOCKING, SCANNING, AND PROCESSING

e dbPutField: This routine changes the specified field and then, if the field has been declared process_passive,
calls dbScanPassive. Each field of each record type has the attribute process_passive declared TRUE
or FALSE in the definition file. The attribute is a global property which is set by the record type. This use of
process_passive only affects calls to the dbPutFieldroutine. If dbPutField finds the record already
active (this can happen to asynchronous records) and it is supposed to cause it to process, it arranges for it to be
processed again once the current processing completes.

o dbGetLink: If the link specifies process passive, this routine calls dbScanPassive. Whether ornot dbScanPassive
is called, it then obtains the specified value.

o dbPutLink: This routine changes the specified field. Then, if the link specifies process passive, it calls doScanPassive.
dbPutLink is only called from record processing routines. Note that this usage of process_passive is
under the control of the application developer. If dbPutLink finds the record already active because of a
dbPutField directed to this record then it arranges for the record to be processed again, once the current
processing completes.

All non-record processing tasks (Channel Access, Sequence Programs, etc.) call dbGetField to obtain database
values. dbGetField just reads values without asking that a record be processed.

5.6 Record Processing

A record is processed as a result of a call to dbProcess. Each record support module must supply a routine
process. This routine does most of the work related to record processing. Since the details of record process-
ing are record type specific this topic is discussed in greater detail in the Chapter “Record Support”.

5.7 Guidelines for Creating Database Links

The ability to link records together is an extremely powerful feature of the IOC software. In order to use links properly
it is important that the Application Developer understand how they are processed. As an introduction consider the
following example:

InLink PP

A FwdLink B FwdLink C

Assume that A, B, and C are all passive records. The notation states that A has a forward link to B and B to C. C has
an input link obtaining a value from A. Assume, for some reason, A gets processed. The following sequence of events
occurs:

1. A begins processing. While processing a request is made to process B.

2. B starts processing. While processing a request is made to process C.

3. C starts processing. One of the first steps is to get a value from A via the input link.
4

. At this point a question occurs. Note that the input link specifies process passive (signified by the PP after
InLink). But process passive states that A should be processed before the value is retrieved. Are we in an
infinite loop? The answer is no. Every record contains a field PACT (processing active), which is set TRUE
when record processing begins and is not set FALSE until all processing completes. When C is processed A
still has PACT TRUE and will not be processed again.

5. C obtains the value from A and completes its processing. Control returns to B.

6. B completes returning control to A



5.7. GUIDELINES FOR CREATING DATABASE LINKS 87

7. A completes processing.

This brief example demonstrates that database links need more discussion.

5.7.1 Rules Relating to Database Links
5.7.1.1 Processing Order

The processing order follows the following rules:

1. Forward links are processed in order from left to right and top to bottom. For example the following records are
processed in the order FLNK1, FLNK2, FLNK3, FLNK4 .

FLNK1 FLNK2

fanout

FLNK3 FLNK4

2. If a record has multiple input links (such as the calculation or select records) the input values are nornally
fetched in the natural order. For example for link fields named INPA, INPB, ..., INPL, the links would be read
in the order A, B, C etc. Thus if obtaining an input results in a record being processed, the processing order is
guaranteed. Some record types may not follow this rule however.

3. All input and output links are processed before the forward link.

5.7.1.2 Lock Sets

All records, except for the conditions listed in the next paragraph, linked together directly or indirectly are placed in
the same lock set. When dbScanLock is called the entire set, not just the specified record, is locked. This prevents
two different tasks from simultaneously modifying records in the same lock set.

5.7.1.3 PACT - Process Active

Every record contains a field PACT. This field is set TRUE at the beginning of record processing and is not set FALSE
until the record is completely processed. In particular no links are processed with PACT FALSE. This prevents infinite
processing loops. The example given at the beginning of this section gives an example. It will be seen in the next two
sections that PACT has other uses.

5.7.1.4 Process Passive: Link option

Input and output links have an option called process passive. For each such link the application developer can specify
process passive TRUE (PP) or process passive FALSE (NPP). Consider the following example:

InLink PP 5
FwdLink B
A fanout o
FwdLink T
InLink PP +




88 CHAPTER 5. DATABASE LOCKING, SCANNING, AND PROCESSING

Assume that all records except fanout are passive. When the fanout record is processed the following sequence of
events occur:

1. Fanout starts processing and asks that B be processed.
2. B begins processing. It calls dbGetLink to obtain data from A.
3. Because the input link has process passive true, a request is made to process A.
4. A is processed, the data value fetched, and control is returned to B
5. B completes processing and control is returned to fanout. Fanout asks that C be processed.
6. C begins processing. It calls dbGetLink to obtain data from A.
7. Because the input link has process passive TRUE, a request is made to process A.
8. A is processed, the data value fetched, and control is returned to C.
9. C completes processing and returns to fanout
10. The fanout completes

Note that A was processed twice. This is unnecessary. If the input link to C were declared No Process Passive then A
would only be processed once. Thus a better solution would be:

InLink PP 5
FwdLink B
A fanout o
FwdLink ?
InLink NPP +

5.7.1.5 Process Passive: Field attribute

All record type field definitions have an attribute called process_passive which is specified in the record defi-
nition file. It cannot be changed by an IOC application developer. This attribute is used only by dbPutField. It
determines if a passive record will be processed after doPutField sets a field in the record. Consult the record
specific information in the record reference manual for the setting of individual fields.

5.7.1.6 Maximize Severity: Link option

Input and output links have an option called maximize severity. For each such link the application developer can
specify the option as MS (Maximize Severity), NMS (Non-Maximize Severity), MSS (Maximize Status and Severity)
or MST (Maximize Severity if Invalid).

When database input or output links are defined, the application developer can use this option to specify whether and
how alarm severities should be propagated across links with the data. The alarm severity is transferred only if the new
severity will be greater than the current severity of the destination record. If the severity is propagated the alarm status
is set equal to LINK_ALARM (unless the link option is MSS when the alarm status will also be copied from the source
record).



5.8. GUIDELINES FOR SYNCHRONOUS RECORDS 89

5.8 Guidelines for Synchronous Records

A synchronous record is a record that can be completely processed without waiting. Thus the application developer
never needs to consider the possibility of delays when he defines a set of related records. The only consideration is
deciding when records should be processed and in what order a set of records should be processed.

The following reviews the methods available to the application programmer for deciding when to process a record and
for enforcing the order of record processing.

1. A record can be scanned periodically (at one of several rates), via I/O event, or via Event.

2. For each periodic group and for each Event group the PHAS field can be used to specify processing order.
3. The application programmer has no control over the record processing order of records in different groups.
4

. The disable fields (SDIS, DISA, and DISV) can be used to disable records from being processed. By letting
the SDIS field of an entire set of records refer to the same input record, the entire set can be enabled or disabled
simultaneously. See the Record Reference Manual for details.

5. A record (periodic or other) can be the root of a set of passive records that will all be processed whenever the
root record is processed. The set is formed by input, output, and forward links.

6. The process_passive attribute of each record field determines if a passive record will be processed when
a dbPutField is directed to the field. The application developer must be aware of the possibility of record
processing being triggered by external sources using this mechanism.

7. The process_passive option for input and output links provides the application developer control over how
a set of records are scanned.

8. General link structures can be defined. The application programmer should be wary, however, of defining
arbitrary structures without carefully analyzing the processing order.

5.9 Guidelines for Asynchronous Records

The previous discussion does not cover asynchronous device support. An example might be a GPIB input record.
When the record is processed the GPIB request is started and the processing routine returns. Processing, however, is
not really complete until the GPIB request completes. This is handled via an asynchronous completion routine. Let’s
state a few attributes of asynchronous record processing.

During the initial processing for all asynchronous records the following is done:
1. PACT is set TRUE
2. Data is obtained for all input links
3. Record processing is started
4. The record processing routine returns
The asynchronous completion routine performs the following algorithm:
1. Record processing continues
2. Record specific alarm conditions are checked
3. Monitors are raised
4. Forward links are processed
5. PACT is set FALSE.

A few attributes of the above rules are:



90 CHAPTER 5. DATABASE LOCKING, SCANNING, AND PROCESSING

1. Asynchronous record processing does not delay the scanners.

2. Between the time that record processing begins and the asynchronous completion routine completes, no attempt
will be made to again process the record. This is because PACT is TRUE. The routine dbProcess checks
PACT and does not call the record processing routine if it is TRUE. Note, however, that if dbProcess finds
the record active 10 times in succession, it raises a SCAN_ALARM.

3. Forward and output links are triggered only when the asynchronous completion routine completes record pro-
cessing.

With these rules the following works just fine:

ASYN dbScanPasive B

When dbProcess is called for record ASYN, processing will be started but dbScanPassive will not be called.
Until the asynchronous completion routine executes any additional attempts to process ASYN are ignored. When the
asynchronous callback is invoked the dbScanPassive is performed.

Problems still remain. A few examples are:

5.9.1 Infinite Loop

Infinite processing loops are possible.

dbScanPasive N

dbScanPasive

Assume both A and B are asynchronous passive records and a request is made to process A. The following sequence
of events occur.

1. A starts record processing and returns leaving PACT TRUE.

2. Sometime later the record completion for A occurs. During record completion a request is made to process B.
B starts processing and control returns to A which completes leaving its PACT field FALSE.

3. Sometime later the record completion for B occurs. During record completion a request is made to process A.
A starts processing and control returns to B which completes leaving its PACT field FALSE.

Thus an infinite loop of record processing has been set up. It is up to the application developer to prevent such loops.

5.9.2 Obtain Old Data

A dbGetLink to a passive asynchronous record can get old data.

A dbGetLink B

If A is a passive asynchronous record then the dbGet Link request forces dbProcess to be called for A. dbProcess
starts the processing and returns. dbGetLink then reads the field value which is still old because processing will
only be completed at a later time.

5.9.3 Delays

Consider the following:



5.10. CACHED PUTS 91

ASYN dbScanPasive ASYN dbScanPasive —

The second ASYN record will not begin processing until the first completes, etc. This is not really a problem except
that the application developer must be aware of delays caused by asynchronous records. Again, note that scanners are
not delayed, only records downstream of asynchronous records.

5.10 Cached Puts

The rules followed by dbPutLink and dbPutField provide for “cached” puts. This is necessary because of
asynchronous records. Two cases arise.

The first results from a dbPutField, which is a put coming from outside the database, i.e. Channel Access puts.
If this is directed to a record that already has PACT TRUE because the record started processing but asynchronous
completion has not yet occurred, then a value is written to the record but nothing will be done with the value until the
record is again processed. In order to make this happen dbPutField arranges to have the record reprocessed when
the record finally completes processing.

The second case results from dbPutLink finding a record already active because of a dbPutField directed to
the record. In this case dbPutLink arranges to have the record reprocessed when the record finally completes
processing. If the record is already active because it appears twice in a chain of record processing, it is not reprocessed
because the chain of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a record while it is active, each new
value is placed in the record but it will still only be processed once, i.e. last value wins.

5.11 putNotify

dbPutNotify (called when a Channel Access client calls ca_put_callback) is a request to notify the caller
when all records processed as a result of the put are complete. Because of asynchronous records this can be compli-
cated and the set of records that are processed because of a put may not be deterministic. The result of a dbPutNotify
is the same as a dbPutField except for the following:

e dbPutNotify requests are queued rather than cached. Thus when additional requests are directed to a record
that already has an active dbPutNotify, they are queued. As each one finishes it releases the next one in the
queue.

e If a dbPutNotify links to a record that is not active but has a dbPutNotify attached to it, no attempt is
made to process the record.

5.12 Channel Access Links

A channel access link is:
1. A record link that references a record in a different IOC.
2. A link that the application developer forces to be a channel access link.
A channel access client task (dbCa) handles all I/O for channel access links. It does the following:
e At IOC initialization, dbCa issues channel access search requests for each channel access link.

e For each input link it establishes a channel access monitor. Ituses ca_field_typeand ca_element_count
when it establishes the monitor. It also monitors the alarm status. Whenever the monitor is invoked the new data



92 CHAPTER 5. DATABASE LOCKING, SCANNING, AND PROCESSING

is stored in a buffer belonging to dbCa. When iocCore or the record support module asks for data the data is
taken from the buffer and converted to the requested type.

e For each output link, a buffer is allocated the first time iocCore/record support issues a put and a channel access
connection has been made. This buffer is allocated according to ca_field_typeand ca_element_count.
Each time iocCore/record support issues a put, the data is converted and placed in the buffer and a request is
made to dbCa to issue a new ca_put.

Even if a link references a record in the same IOC it can be useful to force it to act like a channel access link. In
particular the records will not be forced to be in the same lock set. As an example consider a scan record that links to
a set of unrelated records, each of which can cause a lot of records to be processed. It is often NOT desirable to force
all these records into the same lock set. Forcing the links to be handled as channel access links solves the problem.

CA links which connect between IOCs incur the extra overhead associated with message passing protocols, operating
system calls, and network activity. In contrast, CA links which connect records in the same IOC are executed more
efficiently by directly calling database access functions such as dbPutField and dbGetField, or by receiving
callbacks directly from a database monitor subscription event queue.

Because channel access links interact with the database only via dbPutField, dbGetField, and a database mon-
itor subscription event queue, their interaction with the database is fundamentally different from database links which
are tightly integrated within the code that executes database records. For this reason and because channel access does
not support the passing of a process passive flag, the semantics of channel access links are not the same as database
links. Let’s discuss the channel access semantics of INLINK, OUTLINK, and FWDLINK separately.

5.12.1 INLINK

The options for process passive are:
o Input links always act like NPP.
e CA - Forces the link to be a channel access link.

e CP - Forces the link to be a channel access link and also requests that the record containing the link be processed
whenever a monitor occurs.

e CPP - Force the link to be a channel access link and also requests that the record containing the link, if it is
passive, be processed whenever a monitor occurs.

Maximize Severity is honored.

5.12.2 OUTLINK

The options for process passive are:

e [t is not possible to honor PP or NPP options; the put operation completes immediately but whether the destina-
tion record will process depends on the process passive attribute of the destination field.

e CA - Force the link to be a channel access link.

Maximize Severity is not honored.

5.12.3 FWDLINK

A channel access forward link is honored only if it references the PROC field of a record. In that case a ca_put with
a value of 1 is written each time a forward link request is issued.

The available options are:



5.12. CHANNEL ACCESS LINKS

e CA - Force the link to be a channel access link.

Maximize Severity is not honored.

93



94

CHAPTER 5. DATABASE LOCKING, SCANNING, AND PROCESSING



Chapter 6

Database Definition

6.1

Overview

This chapter describes database definitions. The following definitions are described:

Menu

Record Type
Device

Driver

Registrar
Variable
Function
Breakpoint Table

Record Instance

Record Instances are fundamentally different from the other definitions. A file containing record instances should
never contain any of the other definitions and vice-versa. Thus the following convention is followed:

Database Definition File A file that contains any type of definition except record instances.

Record Instance File A file that contains only record instance definitions.

This chapter also describes utility programs which operate on these definitions

Any combination of definitions can appear in a single file or in a set of files related to each other via include files.

6.2

Summary of Database Syntax

The following summarizes the Database Definition syntax:

path "path"
addpath "path"
include "filename"
#comment
menu (name) |
include "filename"

95



96

CHAPTER 6. DATABASE DEFINITION

choice (choice_name, "choice_value")

recordtype (record_type) {
include "filename"
field(field_name, field_type) {
asl (asl_level)
initial ("init_value")
promptgroup (gui_group)
prompt ("prompt_value")
special (special_value)
pp (pp_value)
interest (interest_level)
base (base_type)
size (size_value)
extra ("extra_info")
menu (name)
}

%$C_declaration

device (record_type, link_type, dset_name, "choice_string")
driver (drvet_name)

registrar (function_name)

variable (variable_name)

breaktable (name) {
raw_value eng_value

}

The Following defines a Record Instance

record(record_type, record_name) {

include "filename"

field(field_name, "value")
alias(alias_name)
info(info_name, "value")

}

alias (record_name,alias_name)

6.3 General Rules for Database Definition

6.3.1 Keywords

The following are keywords, i.e. they may not be used as values unless they are enclosed in quotes:



6.3. GENERAL RULES FOR DATABASE DEFINITION 97

path
addpath
include
menu
choice
recordtype
field
device
driver
registrar
function
variable
breaktable
record
grecord
info

alias

6.3.2 Unquoted Strings

In the summary section, some values are shown as quoted strings and some unquoted. The actual rule is that any string

consisting of only the following characters does not have to be quoted unless it contains one of the above keywords:
a-z A-7Z2 0-9 _ - : . [ 1 < >3

These are also the legal characters for process variable names. Thus in many cases quotes are not needed.

6.3.3 Quoted Strings

A quoted string can contain any ascii character except the quote character ". The quote character itself can given by
using \ as an escape. For example "\ " " is a quoted string containing the single character ".

6.3.4 Macro Substitution

Macro substitutions are permitted inside quoted strings. Macro instances take the form:
$ (name)

or
S{name}

There is no distinction between the use of parentheses or braces for delimiters, although the two must match for a
given macro instance. The macro name can be made up from other macros, for example:

S (name_5S (sel))

A macro instance can also provide a default value that is used when no macro with the given name is defined. The
default value can be defined in terms of other macros if desired, but cannot contain any unescaped comma characters.
The syntax for specifying a default value is as follows:

S (name=default)

Finally macro instances can also contain definitions of other macros, which can (temporarily) override any existing
values for those macros but are in scope only for the duration of the expansion of this macro instance. These definitions
consist of name=value sequences separated by commas, for example:



98 CHAPTER 6. DATABASE DEFINITION

$ (abcd=$(a) $ (b) $ (c) $(d) ,a=A, b=B, c=C, d=D)

6.3.5 Escape Sequences
The database routines translate standard C escape sequences inside database field value strings only. The standard C
escape sequences supported are:

\a \b \f \n \r \t \v \\ \? \’ \" \ooo \xhh

\ooo represents an octal number with 1, 2, or 3 digits. \xhh represents a hexadecimal number with 1 or 2 digits.

6.3.6 Comments

The comment symbol is “#°. Whenever the comment symbol appears, it and all characters through the end of the line
are ignored.

6.3.7 Define before referencing

No item can be referenced until it is defined. For example a recordtype menu field can not reference a menu
unless that menu definition has already been defined. Another example is that a record instance can not appear until
the associated record type has been defined.

6.3.8 Multiple Definitions

If a menu, recordtype, device, driver, or breakpoint table is defined more than once, then only the first instance is
used. Record instance definitions however are (normally) cumulative, so multiple instances of the same record may be
loaded and each time a field value is encountered it replaces the previous value.

6.3.9 Filename Extensions

By convention:
e Record instances files have the extension “. db” or “. vdb” if the file also contains visual layout information

e Database definition files have the extension . dbd”

6.4 path addpath — Path Definition

6.4.1 Format

path "dir:dir...:dir
addpath "dir:dir...:dir

The path string follows the standard convention for the operating system, i.e. directory names are separated by a colon

T3] [T}

:” on Unix and a semicolon ““; ”” on Windows.

The path command specifies the current search path for use when loading database and database definition files. The
addpath appends directory names to the current path. The path is used to locate the initial database file and included
files. An empty dir at the beginning, middle, or end of a non-empty path string means the current directory. For
example:



6.5. INCLUDE — INCLUDE FILE 99

nnn: :mmm # Current directory is between nnn and mmm
:nnn # Current directory is first
nnn: # Current directory is last

Utilities which load database files (dbExpand, dbLoadDatabase, etc.) allow the user to specify an initial path.
The path and addpath commands can be used to change or extend the initial path.

The initial path is determined as follows:
If an initial path is specified, it is used. Else:
If the environment variable EPICS_DB_INCLUDE_PATH is defined, it is used. Else:
the default path is “.”, i.e. the current directory.

The path is used unless the filename contains a / or \. The first directory containing the specified filename is used.

6.5 include - Include File

6.5.1 Format

include "filename"

An include statement can appear at any place shown in the summary. It uses the path as specified above.

6.6 menu - Menu Declaration

6.6.1 Format

menu (name) {
choice (choice_name, "choice_string")

6.6.2 Definitions
name Name for menu. This is the unique name identifying the menu. If duplicate definitions are specified, only the
first is used.

choice_name The name used in the enum generated by dbToMenuH or dbToRecordtypeH. This must be a legal
C/C++ identifier.

choice_string The text string associated with this particular choice.

6.6.3 Example

menu (menuYesNo) {
choice (menuYesNoNO, "NO")
choice (menuYesNoYES, "YES")



100 CHAPTER 6. DATABASE DEFINITION

6.7 recordtype - Record Type Declaration

6.7.1 Format

recordtype (record_type) {
field(field_name, field_type) {
asl (as_level)
initial ("init_value")
promptgroup (gui_group)
prompt ("prompt_value")
special (special_value)

pp (pp_value)

interest (interest_level)
base (base_type)

size (size_value)

extra ("extra_info")

menu ("name")

}

%$C_declaration

6.7.2 Field Definition Rules

asl Sets the Access Security Level for the field. Access Security is discussed in chapter 8.

initial Provides an initial (default) value for the field.

promptgroup The group to which the field belongs, for database configuration tools.

prompt A prompt string for database configuration tools. Optional if promptgroup is not defined.
special If specified, special processing is required for this field at run time.

pp Whether a passive record should be processed when Channel Access writes to this field.

interest Interest level for the field.

base For integer fields, the number base to use when converting the field value to a string.

size Must be specified for DBF_STRING fields.

extra Must be specified for DBF_NOACCESS fields.

menu Must be specified for DBF_MENU fields. It is the name of the associated menu.

6.7.3 Definitions

record_type The unique name of the record type. If duplicates are specified, only the first definition is used.

field_name The field name, which must be a valid C identifier. When include files are generated, the field name is
converted to lower case. Previous versions of EPICS required the field name be a maximum of four characters,
but this restriction no longer applies.

field_type This must be one of the following values:

e DBF_STRING



6.7. RECORDTYPE — RECORD TYPE DECLARATION 101

e DBF_CHAR, DBF_UCHAR
e DBF_SHORT, DBF_USHORT
e DRBF_LONG, DBF_ULONG
e DBF_FLOAT, DBF_DOUBLE
e DBF_ENUM, DBF_MENU, DBF_DEVICE
e DBEF_TINLINK, DBF_OUTLINK, DBF_FWDLINK
e DBEF_NOACCESS
as_level This must be one of the following values:
e ASLO
e ASLI1 (default value)

Fields which operators normally change are assigned ASLO. Other fields are assigned ASL1. For example, the
VAL field of an analog output record is assigned ASLO and all other fields ASL1. This is because only the VAL
field should be modified during normal operations.

init_value A legal value for data type.
prompt_value A prompt value for database configuration tools.
gui_group This must be one of the following:

e GUI_COMMON

e GUI_ALARMS

e GUI_BITS1

e GUI_BITS2

e GUI_CALC

e GUI_CLOCK

e GUI_COMPRESS

e GUI_CONVERT

e GUI_DISPLAY

e GUI_HIST

e GUI_INPUTS

e GUI_LINKS

e GUI_MBB

e GUI_MOTOR

e GUI_OUTPUT

e GUI_PID

e GUI_PULSE

e GUI_SELECT

e GUI_SEQ1

e GUI_SEQ2

e GUI_SEQ3



102 CHAPTER 6. DATABASE DEFINITION

GUI_SUB

GUI_TIMER

GUI_WAVE

GUI_SCAN

This information is for use by Database Configuration Tools. This is defined only for fields that can be
given values by database configuration tools. File guigroup.h contains all possible definitions. This
allows database configuration tools to group fields together by functionality, not just order them by name.
This feature has seldom been used, so many record types do not have appropriate values assigned to some
fields.

special_value Must be one of the following:

e SPC_MOD — Notify record support when modified. The record support special routine will be called
whenever the field is modified by the database access routines.

e SPC_NOMOD — No external modifications allowed. This value disables external writes to the field, so it
can only be set by the record or device support module.

e SPC_DBADDR — Use this if the record support cvt_dbaddr routine should be called by dbNameToAddr,
i.e. when code outside record/device support is connecting to the field.

The following values are for database common fields. They must not be used for record specific fields:
e SPC_SCAN — Scan related field.
e SPC_ALARMACK — Alarm acknowledgment field.
e SPC_AS — Access security field.
The following values are deprecated, use SPC_MOD instead:
e An integer value greater than 103.
e SPC_RESET — areset field is being modified.
e SPC_LINCONV — A linear conversion field is being modified.
e SPC_CALC — A calc field is being modified.
pp-value Should a passive record be processed when Channel Access writes to this field? The allowed values are:
e NO (default)
e YES
interest_level An interest level for the dbopr command.
base For integer type fields, the default base. The legal values are:
e DECIMAL (Default)
e HEX
size_value The number of characters for a DBF_STRING field.

extra_info For DBF_NOACCESS fields, this is the C language definition for the field. The definition must end with
the fieldname in lower case.

% C _declaration A percent sign % inside the record body introduces a line of code that is to be included in the
generated C header file.



6.8. DEVICE — DEVICE SUPPORT DECLARATION 103

6.7.4 Example

The following is the definition of the event record type:

recordtype (event) {

include "dbCommon.dbd"

field (VAL,DBF_USHORT) {
prompt ("Event Number To Post")
promptgroup (GUI_INPUTS)
asl (ASLO)

}

field (INP,DBF_INLINK) {
prompt ("Input Specification")
promptgroup (GUI_INPUTS)
interest (1)

}

field (SIOL,DBF_INLINK) {
prompt ("Sim Input Specifctn")
promptgroup (GUI_INPUTS)
interest (1)

}

field (SVAL, DBF_USHORT) {
prompt ("Simulation Value")

}

field (SIML,DBF_INLINK) {
prompt ("Sim Mode Location")
promptgroup (GUI_INPUTS)
interest (1)

}

field (SIMM, DBF_MENU) {
prompt ("Simulation Mode")
interest (1)
menu (menuYesNo)

}

field (SIMS, DBF_MENU) {
prompt ("Sim mode Alarm Svrty")
promptgroup (GUI_INPUTS)
interest (2)
menu (menuAlarmSevr)

6.8 device - Device Support Declaration

6.8.1 Format

device (record_type, link_type, dset_name, "choice_string")

6.8.2 Definitions

record_type Record type. The combination of record_type and choice_string must be unique. If the same
combination appears more than once, only the first definition is used.



104

link_type Link type. This must be one of the following:

CONSTANT
PV_LINK
VME_TO
CAMAC_IO
AB_TIO
GPIB_IO
BITBUS_IO
INST_IO
BBGPIB_IO
RF_TIO

VXI_TIO

CHAPTER 6. DATABASE DEFINITION

dset_name The name of the device support entry table for this device support.

choice _string The DTYP choice string for this device support. A choice_string value may be reused for different

record types, but must be unique for each specific record type.

6.8.3 Examples

6.9 driver - Driver Declaration

device (ai, CONSTANT, devAiSoft, "Soft Channel")
device (ai,VME_IO,devAiXy566Se, "XYCOM-566 SE Scanned")

6.9.1 Format

driver (drvet_name)

6.9.2 Definitions

drvet_name If duplicates are defined, only the first is used.

6.9.3 Examples

6.10 registrar — Registrar Declaration

driver (drvVxi)
driver (drvXy210)

6.10.1 Format

registrar (function_name)



6.11. VARIABLE — VARIABLE DECLARATION 105

6.10.2 Definitions
function_name The name of an C function that accepts no arguments, returns void and has been marked in its source
file with an epicsExportRegistrar declaration, e.g.

static void myRegistrar (void);
epicsExportRegistrar (myRegistrar);

This can be used to register functions for use by subroutine records or that can be invoked from iocsh. The example
application described in Section 2.2, “Example IOC Application” on page 13 gives an example of how to register
functions for subroutine records.

6.10.3 Example

registrar (myRegistrar)

6.11 wvariable - Variable Declaration

6.11.1 Format

variable (variable_name([, typel)

6.11.2 Definitions

variable_name The name of a C variable which has been marked in its source file with an epicsExportAddress
declaration.

type The C variable’s type. If not present, int is assumed. Currently only int and double variables are supported.

This registers a diagnostic/configuration variable for device or driver support or a subroutine record subroutine so
that the variable can be read and set with the iocsh var command (see Section 18.2.5 on page 255). The example
application described in Section 2.2 on page 13 provides an example of how to register a debug variable for a subroutine
record.

6.11.3 Example

In an application C source file:

#include <epicsExport.h>

static double myParameter;
epicsExportAddress (double, myParameter);

In an application database definition file:

variable (myParameter, double)



106 CHAPTER 6. DATABASE DEFINITION

6.12 function - Function Declaration

6.12.1 Format

function (function_name)

6.12.2 Definitions
function_name The name of a C function which has been exported from its source file with an epicsRegisterFunction
declaration.

This registers a function so that it can be found in the function registry for use by record types such as sub or aSub
which refer to the function by name. The example application described in Section 2.2 on page 13 provides an example
of how to register functions for a subroutine record.

6.12.3 Example

In an application C source file:

#include <epicsExport.h>
#include <registryFunction.h>

static long myFunction (void xargp) {
/* my code ... */
}

epicsRegisterFunction (myFunction) ;
In an application database definition file:

function (myFunction)

6.13 breaktable - Breakpoint Table

6.13.1 Format

breaktable (name) {
raw_value eng_value

6.13.2 Definitions

name Name, which must be alpha-numeric, of the breakpoint table. If duplicates are specified the first is used.
raw_value The raw value, i.e. the actual ADC value associated with the beginning of the interval.

eng_value The engineering value associated with the beginning of the interval.



6.14. RECORD — RECORD INSTANCE 107

6.13.3 Example

breaktable (typeddegC) {

0.000000 0.000000
365.023224 67.000000
1000.046448 178.000000
3007.255859 524.000000
3543.383789 613.000000
4042.988281 692.000000
4101.488281 701.000000

6.14 record - Record Instance

6.14.1 Format

record(record_type, record_name) {
alias(alias_name)
field(field_name, "field_value")
info (info_name, "info_value")

}

alias (record_name, alias_name)

6.14.2 Definitions

record_type The record type.
record_name The record name. This must be composed of the following characters:
a-z A-Z2 0-9 _ -+ : [ ] < >3
NOTE: If macro substitutions are used the name must be quoted.

If duplicate definitions are given for the same record, then the last value given for each field is the value assigned
to the field.

alias_name An alternate name for the record, following the same rules as the record name.
field_name A field name.

field_value A value for the named field, depending on the particular field type. Inside double quotes the field value
string may contain escaped C89 characters such as \", \t, \n, \064 and \x7e, and these will be translated
appropriately when loading the database. Permitted values are as follows:

e DBF_STRING
Any ASCII string. If it exceeds the field length, it will be truncated.

e DBF_CHAR, DBF_UCHAR, DBF__SHORT, DBF_USHORT, DBF_LONG, DBF_ULONG
A string that represents a valid integer. The standard C conventions are applied, i.e. a leading 0 means the
value is given in octal and a leading Ox means that value is given in hex.

e DBF_FLOAT, DBF_DOUBLE
The string must represent a valid floating point number.

e DBF_MENU
The string must be one of the valid choices for the associated menu.



108

CHAPTER 6. DATABASE DEFINITION

e DBF_DEVICE
The string must be one of the valid device choice strings.

e DBF_INLINK, DBF_OUTLINK, DBF_FWDLINK

NOTES:

e If the field name is INP or OUT then this field is associated with DTYP, and the permitted values are
determined by the link type of the device support selected by the current DTYP choice string. Other
DBF_INLINK and DBF_OUTLINK fields must be either CONSTANT or PV_LINKS.

e A device support that specifies a link type of CONSTANT can be given either a constant or a PV__LINK.

The allowed values for the field depend on the device support’s link type as follows:

e CONSTANT
A numeric literal, valid for the field type it is to be read into.

e PV_LINK
A value of the form:

record.field process maximize

record is the name of a record that exists in this or another IOC.

The . field, process, and maximize parts are all optional.

The default value for . fieldis .VAL.

process can have one of the following values:

NPP — No Process Passive (Default)

PP — Process Passive

CA — Force link to be a channel access link

CP — CA and process on monitor

CPP — CA and process on monitor if record is passive
NOTES:

CP and CPP are valid only for DBF__INLINK fields.

DBF_FWDLINK fields can use PP or CA. If a DBF_FWDLINK is a channel access link it must
reference the target record’s PROC field.

maximize can have one of the following values:

NMS — No Maximize Severity (Default)
MS — Maximize Severity
MSS — Maximize Severity and Status

MSI — Maximize Severity if Invalid

e VME_TO
#Ccard Ssignal @parm

card — the card number of associated hardware module

signal —signal on card

parm — An arbitrary character string of up to 31 characters. This field is optional and is device
specific.



6.14. RECORD — RECORD INSTANCE 109

e CAMAC_IO
#Bbranch Ccrate Nstation Asubaddress Ffunction @parm

branch, crate, station, subaddress, and function should be obvious to camac users.
subaddress and function are optional (0 if not given). parm is also optional and is device
specific (25 characters max).

e AB_TO
#L1ink Aadapter Ccard Ssignal @parm

1ink — Scanner, i.e. vime scanner number

adapter — Adapter. Allen Bradley also calls this rack

card — Card within Allen Bradley Chassis

signal — signal on card

parm — optional device-specific character string (27 char max)

e GPIB_IO
#L1ink Aaddr Qparm

link — gpib link, i.e. interface
addr — GPIB address
parm — device-specific character string (31 char max)

e BITBUS_IO
#L1link Nnode Pport Ssignal @parm

1ink —link, i.e. vme bitbus interface

node — bitbus node

port — port on the node

signal — signal on port

parm — device specific-character string (31 char max)

e INST_TIO @parm
parm — Device dependent character string

e BBGPIB_IO
#L1ink Bbbaddr Ggpibaddr @parm

1ink —link, i.e. vme bitbus interface

bbadddr — bitbus address

gpibaddr — gpib address

parm — optional device-specific character string (31 char max)

e RF_TO
#Rcryo Mmicro Ddataset Eelement

e VXI_TO
#Vframe Cslot Ssignal @parm (Dynamic addressing)
or
#Vla Signal @parm (Static Addressing)

frame — VXI frame number

slot — Slot within VXI frame

la — Logical Address

signal — Signal Number

parm — device specific character string(25 char max)

info_name The name of an Information Item related to this record. See section 6.15 below for more on Information

Items.



110

CHAPTER 6. DATABASE DEFINITION

info_value Any ASCII string. IOC applications using this information item may place additional restrictions on the
contents of the string.

6.14.3 Examples

record(ai, STS_AbAiMaS0) {

}

field(SCAN,".1 second")

field (DTYP, "AR-1771IFE-4t020MA")
field (INP, "#L0 A2 CO SO FO @")
field (PREC, "4")
field (LINR, "LINEAR")
field (EGUF, "20")
field (EGUL, "4")
field (EGU, "MilliAmps")
field (HOPR, "20")

field (LOPR, "4")

record (ao, STS_AbAoMaC1S0) {

}

field(DTYP, "AB-17710FE")
field (OUT, "#L0 A2 C1 SO FO @")
field (LINR, "LINEAR")

field (EGUF, "20")

field (EGUL, "4")

field (EGU, "MilliAmp")
field (DRVH, "20")

field (DRVL, "4")

field (HOPR, "20")

field (LOPR, "4")

info (autosaveFields, "VAL")

~ e~~~ o~~~ —~

record(bi, STS_AbDiA0CO0S0) {

field (SCAN,"I/O Intr")
field(DTYP, "AB-Binary Input")
field (INP, "#L0 A0 CO SO FO @")
field (ZNAM, "Off")

field (ONAM, "On")

6.15 Record Information Item

Information items provide a way to attach named string values to individual record instances that are loaded at the
same time as the record definition. They can be attached to any record without having to modify the record type, and
can be retrieved by programs running on the IOC (they are not visible via Channel Access at all). Each item attached
to a single record must have a unique name by which it is addressed, and database access provides routines to allow a
record’s info items to be scanned, searched for, retrieved and set. At runtime a void~* pointer can also be associated
with each item, although only the string value can be initialized from the record definition when the database is loaded.



6.16. RECORD ATTRIBUTES 111

6.16 Record Attributes

Each record type can have any number of record attributes. Each attribute is a psuedo field that can be accessed via
database and channel access. Each attribute has a name that acts like a field name but returns the same value for all
instances of the record type. Two attributes are generated automatically for each record type: RTYP and VERS. The
value for RTYP is the record type name. The default value for VERS is “none specified”, which can be changed by
record support. Record support can call the following routine to create new attributes or change existing attributes:

long dbPutAttribute (char *recordTypename,
char xname, charx*value)

The arguments are:
recordTypename — The name of recordtype.
name — The attribute name, i.e. the psuedo field name.

value — The value assigned to the attribute.

6.17 Breakpoint Tables — Discussion

The menu menuConvert is used for field LINR of the ai and ao records. These records allow raw data to be
converted to/from engineering units via one of the following:

1. No Conversion.

2. Slope Conversion.
3. Linear Conversion.
4. Breakpoint table.

Other record types can also use this feature. The first choice specifies no conversion; the second and third are both
linear conversions, the difference being that for Slope conversion the user specifies the conversion slope and offset
directly, whereas for Linear conversions these are calculated by the device support from the requsted Engineering Units
range and the device support’s knowledge of the hardware conversion range. The remaining choices are assumed to be
the names of breakpoint tables. If a breakpoint table is chosen, the record support modules calls cvtRawToEngBpt
or cvtEngToRawBpt. You can look at the ai and ao record support modules for details.

If a user wants to add additional breakpoint tables, then the following should be done:
e Copy the menuConvert .dbd file from EPICS base/src/bpt
e Add definitions for new breakpoint tables to the end
e Make sure modified menuConvert . dbd is loaded into the IOC instead of EPICS version.

It is only necessary to load a breakpoint file if a record instance actually chooses it. It should also be mentioned that
the Allen Bradley IXE device support misuses the LINR field. If you use this module, it is very important that you do
not change any of the EPICS supplied definitions in menuConvert . dbd. Just add your definitions at the end.

If a breakpoint table is chosen, then the corresponding breakpoint file must be loaded into the IOC before 1ocInit
is called.

Normally, it is desirable to directly create the breakpoint tables. However, sometimes it is desirable to create a break-
point table from a table of raw values representing equally spaced engineering units. A good example is the Thermo-
couple tables in the OMEGA Engineering, INC Temperature Measurement Handbook. A tool makeBpt is provided
to convert such data to a breakpoint table.

The format for generating a breakpoint table from a data table of raw values corresponding to equally spaced engi-
neering values is:



112 CHAPTER 6. DATABASE DEFINITION

!comment line
<header line>
<data table>

The header line contains the following information:

Name An alphanumeric ascii string specifying the breakpoint table name
Low Value Eng Engineering Units Value for first breakpoint table entry
Low Value Raw Raw value for first breakpoint table entry

High Value Eng Engineering Units: Highest Value desired

High Value Raw Raw Value for High Value Eng

Error Allowed error (Engineering Units)

First Table Engineering units corresponding to first data table entry
Last Table Engineering units corresponding to last data table entry
Delta Table Change in engineering units per data table entry

An example definition is:

"TypeKdegF" 32 0 1832 4095 1.0 -454 2500 1
<data table>

The breakpoint table can be generated by executing
makeBpt bptXXX.data

The input file must have the extension of data. The output filename is the same as the input filename with the extension
of .dbd.

Another way to create the breakpoint table is to include the following definition in a Makefile:
BPTS += bptXXX.dbd

NOTE: This requires the naming convention that all data tables are of the form bpt <name>.data and a breakpoint
table bpt <name> . dbd.

6.18 Menu and Record Type Include File Generation.

6.18.1 Introduction

Given a file containing menus, dbToMenuH generates an include file that can be used by any code which uses
the associated menus. Given a file containing any combination of menu definitions and record type definitions,
dbToRecordtypeH generates an include file that can be used by any code which uses the menus and record type.

EPICS base uses the following conventions for managing menu and recordtype definitions. Users generating local
record types are encouraged to do likewise.

e Each menu that is either for fields in database common (for example menuScan) or is of global use (for example
menuYesNo) is defined in a separate file. The name of the file is the same as the menu name with an extension
of .dbd. The name of the generated include file is the menu name with an extension of .h. Thus menuScan
is defined in a file menuScan . dbd and the generated include file is named menuScan.h

e Each record type definition is defined in a separate file. In addition, this file contains any menu definitions
that are used only by that record type. The name of the file is the same as the recordtype name followed
by Record.dbd. The name of the generated incl