PV Access

Oct. 2018

Kay Kasemir

Python examples by Amanda Carpenter
History

Channel Access
- DBR_*: Numbers, enums, string, scalar and array, with time, alarm, limits
- Since beginning of EPICS
- Still fully supported

PV Access
- PV Data: Arbitrary structures
- Started as “EPICS V4” development
- Since EPICS 7 (Dec. 2017) included in EPICS base
PV Access

Fundamentally similar to Channel Access
- Name search via UDP
- Connection for data transfer via TCP
- EPICS_PVA_ADDR_LIST, EPICS_PVA_AUTO_ADDR_LIST

Get, put, monitor
- Plus an ‘RPC’ type operation

Arbitrary PV Data structures instead of DBR_.. types
Custom Data: Great, but then what?

- Which number to show on a user display?
- What units?
- Is this an alarm?
- Time stamp?
“Normative Types”

- **Channel Access**

  ```
  struct dbr_ctrl_double:
  short status
  short severity
  short precision
  char units[8]
  ... no timestamp ...
  double value
  ```

  ```
  struct dbr_time_double:
  short status
  short severity
  timestamp stamp
  double value
  ```

 You get what you request
 (network always transfers complete struct)

- **PV Access**

  ```
  epics:nt/NTScalar:
  double value
  short status
  short severity
  string units
  time timeStamp
  ```

 You get what you request
 (but network only transfers changes)
Channel Access vs. PV Access

EPICS 7 IOCs include PVA server

Similar command line tools:

- cainfo training:ail
- caget training:ail
- camonitor training:ail
- caget –d CTRL_DOUBLE training:ail
- caget training:ail.SCAN

- pvinfo training:ail
- pvget training:ail
- pvget –m training:ail
- pvget –r 'field()' training:ail
- pvget training:ail.SCAN
CS-Studio: Use ‘pva://...’
Images: Normative type NTNDArray

- Served by Area Detector (NDPluginPVA) or ‘start_imagedemo’

- `pvinfo IMAGE`
 - Value, dimensions, codec

- CS-Studio: Image widget
 - Only needs pva://IMAGE
Custom PV Data

SNS Beam Lines started to use this in ~2014

```
start_neutrondemo
pvinfo neutrons
```

Allows fetching just what’s needed:

```
# For detector pixel display
pvget -r 'field(pixel)' neutrons
pvget -m -r 'field(timeStamp, pixel)' neutrons

# For energy displays
pvget -m -r 'field(time_of_flight, pixel)' neutrons
```
Custom PV Data in CS-Studio

Cannot handle arbitrary structure

```
pva://neutrons
```

Can handle fields which are scalar or array

```
pva://neutrons/proton_charge
```

```
pva://neutrons/pixel
```
PV Access and Python

Basic ‘get’

\[\text{cd ~/epics-train/examples/python/}\]
\[\text{python example1.py}\]

‘monitor’

\[\text{python example2.py}\]
PV Access API with Channel Access as “Provider”

PV Access supports both the actual PvAccess protocol but also Channel Access.

New tools, written for PVA, can thus fall back to CA:

```
python example3.py
```

Tools like CS-Studio can use both ca:// and pva://, so multiple transition options.
Custom PV Data in Python Client

Python receives data as dictionary, access to any element

```python
neutrons.py
```
Custom PV Data from Python Server

Surprisingly easy:

```
# Server
python server.py

# Client
pvinfo pair
pvget -m -r "x, y" pair
```

```
# Server
pv = PvObject({'x': INT, 'y': INT})
server = PvaServer('pair', pv)
x = 1
while True:
    pv['x'] = x
    pv['y'] = 2*x
    server.update(pv)
sleep(1)
x = x + 1
```
More Examples

Display Builder `pva_server_ramp`

Python code that serves ‘pva://ramp’ with alarm, prec, timestamp, ...

Display Builder `table_server`

Python code that serves ‘pva://table’ as “NTTable”

→ Not practical to replace regular IOCs with python, but useful when custom data is needed
Custom PV Data from IOC Records

`makeBaseApp.pl -t example` includes “group”,
SEE ~/epics-train/examples/ExampleApp/Db/circle.db

Calc records ..:circle:x & ..:circle:y compute (x, y) coordinate on circle

tInfo() annotations create PV "training:circle" PV as struct { angle, x, y }

PVA “training:circle” updates atomically

camonitor training:x training:y receives separate x, y updates

pvget -m training:circle will always see sqrt(x^2+y^2)==1

cd ~/epics-train/examples/python
python circle.py
PV Access

• Update to Channel Access
 – Both can be used in parallel

• Similar, but supports custom data types
 – Won’t replace IOC, but useful for special cases

• Since EPICS 7 included in base
 – Details of ‘group’, PVA gateway, ‘field(...)’ access still evolving