
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Display Builder Tutorial

Jan. 2020

Kay Kasemir, kasemirk@ornl.gov

mailto:kasemirk@ornl.gov

2

Changes
• Mar. 2024 More display screenshots

• Jan. 2019 USPAS: Initial version

• Jan. 2020 Class file details

3

Display Builder
• Operator Interface Editor and Runtime

• Builds on ideas from EPICS edd/dm, medm, edm, ..

• Very compatible with CS-Studio ‘BOY’

• Started ~2015 in CS-Studio/Eclipse, now in CS-Studio/Phoebus

4

Same Tool, different Results

5

Examples: SNS Accelerator

6

More Accelerator Examples

Created by Operators:

Created by Controls Engineer:

7

Examples: SNS Beam Lines

8

More Beamline Examples

9

Browse the Examples
• Start CSS/Phoebus

• Your setup might have a menu entry
– File, Top Resources, Examples

• If not, or if you’d like to inspect and edit the examples
– Applications, Display, Examples, Install Example Displays

Main Application Toolbar
Menu Window, Show Toolbar

Example Display
Push any of the buttons

Display Runtime Toolbar
Context Menu Window,
Show / Hide Toolbar

Navigate back/forward
also via Alt-Left, Alt-Right cursor keys

Zoom
to view large control room displays on
office computer

Tab
Hover mouse,
open Context Menu,
Close

Context Menu
Details change with widget
on which menu was invoked

10

Send PV to other Tools

Context menu opens other tool with PV

11

Open Existing Display In Editor
• Context menu can open any display in Editor

• Downloads remote files

12

Create New Display
Menu Applications, Display, New Display

– Enter a name with .bob file extension

Main Editor Area
Select Widgets
Move, resize widgets
Ctrl-C, V, X to copy, paste, delete (⌘ on Mac)

Save & Execute the Display

Property Panel
Edit properties of
selected widgets

13

Editing a Display

Quick Edit

Double-click widget to
a) Edit text of Label
b) Edit PV of widgets that use a PV

Widget Palette

Drag widget into editor

- or -

1) Select Widget Type
2) Draw rectangular
area in display

Selecting Widgets

a) Click single widget
b) Ctrl-click to add widget (⌘ on Mac)
c) Drag ‘rubberband’ around widgets
d) Click or Ctrl/ ⌘ click in widget list

14

Suggested Setup for Editing
• Pick a top directory, for example where you installed the example files

• Open Applications, Utility, File Browser
– Set it to your top directory
– On file browser tab, open context menu, “Split Horizontally”, then “Lock Pane”

• Menu Window,
Save Layout As..
– “Editing”

• Menu Applications,
Display, New Display

– Create new file
in your top directory

File Browser

Set to your “top” directory.

Locked.

Edit vs. Run

a) Double-click to run.

b) Right-click, Open With.., Editor

15

Keep It Simple
1. Add a Widget

2. Enter Label’s Text or Widget’s PV Name

3. Done

At Runtime, widget will

ü Show PV’s value, formatted, with units

ü Indicate alarm, disconnect

ü Show tool-tip with PV name and value

ü Combo options read from Enum PV, slider range from numeric PV

ü Disabled when ‘control’ widget has no PV write access

16

Extend the First Display
• Drag a “Text Update” from the

palette
– Enter PV name “sim://ramp(1, 10, 1)”.

Note PV name auto-completion
popup.

• Add “Boolean Button”
– PV name “loc://test”

• Add “LED”
– PV name “loc://test”.

Note name in PV History.

• Execute the display
– Toolbar Button or Context Menu

17

PV Names
• ca://some_pv_name

– EPICS Channel Access PV

• some_pv_name
– Typically same, since “ca://” is the default

• sim://sine
– Simulated PV. See auto-completion hints

• loc://x(4)
– Local PV. See auto-completion hints

• pva://x
– EPICS pvAccess

18

Widget Palette
• Shows all available widgets

– Enter name for ”Search”
– Hover mouse for description
– Drag -or- Select & Rubberband

• Categories
– Graphics show static label, picture, ..
– Monitors update based on reading a PV
– Controls read a PV and can write to the PV
– Plots tend to read from one or more

(waveform) PVs
– Structures group widgets, embed sub-displays

19

Create Widgets via Drag/Drop from other Apps
Email with list of PVs?

– Drag that text into
Display Editor

– Select widget type

Supported:
Text à Label
Text à PV Widget
Image File à Picture Widget
*.bob File à Embedded Display Widget

20

Manipulating Widgets

Widget List

Select widgets

Rename Widgets

View/change their order.

Selected Widgets Tracker

Move or resize selected widgets

Snap to Grid .. Other Widgets

Show Coordinates

Order
Front/Back Align

Size

Distribute

21

Display Properties
Click on display background to select
no widget for editing overall display
properties

• Name
– Shown in Tab

• Macros
– Used by all widgets in this display

• Grid size
– Can aid with placing widgets

22

Widget Properties
Select one (or more) widgets to edit their (common)
properties

• Search
– To find desired property

• PV Name
– Most important property for most widgets

Details depend on the widget type

23

Common Widget Properties

Defaults tend to be reasonable:
– Format with precision set by PV
– Show units provided by PV
– Alarm-sensitive Border
– Fetch Items (Combo, …) from PV

Instead of changing them,
maybe the PV needs to be updated?
Still, can be adjusted as needed for the display.

24

Predefined “Named” Colors and Fonts

Use whenever
possible!

25

Configuring Named Colors, Fonts

Ideally set at start
of project

26

Widget Notes
• Text Entry, Text Update:

– Set Format = String for “long string” waveforms. Default will show array.

• LED, Boolean Button, Checkbox
– Boolean PV
– Numeric PV 0 or not 0 (when ”Bit” set to default of -1)
– Bit in a numeric PV (when ”Bit” set to 0, 1, 2, …)

• Multi-State LED
– Enumerated or numeric PVs
– Defaults to using state values 0, 1, 2, 3, ..

27

Widget Notes
• Combo Box, Radio Button:

– Best for enumerated PV: Enter PV name, done
– Alternatively, un-check “Items from PV” and enter items

28

Action Button
1. Add ActionButton

2. Configure “Actions” property, add “Open Display”

3. Run: Clicking button opens the “other” display.
In principle, any widget can have ‘Actions’.

They appear in the widget’s runtime context menu.
But it’s not obvious to end users that for example a Label will have actions.

29

Screen Navigation

• Replace
– Suggested default.
– Allows back/forward navigation as

in web browser

– Minimizes number of open screens

• New Tab
– Opens in new tab
– Allows specific Pane name

• New Window
– Opens in new window

• With “Replace”, can still use
– Context menu

– Control (⌘ on Mac) for tab
– Shift-Control for window

30

Screen Navigation: Tabs

Tabs
Each tab is in-memory, same *.bob

• Appears immediately when selected

• Uses CPU and memory when hidden

Navigation Tabs
Tab is loaded from separate *.bob
when selected

• May need a little time to load

• No CPU and memory when hidden

31

Macros
• Macros are passed into displays from

1. Enclosing Group or Tab Widget
2. Display
3. Embedded widget container or Action that loaded the display
4. Phoebus preferences

• To use: $(NameOfMacro)

• Examples:
PV Name: $(PV) with PV=TheFullPVName
PV Name: Motor$(N) with N=1, 2, 3, …
Width: $(WID) with WID=200
Visible: $(SHOW) with SHOW=true

.. or ${NameOfMacro}.
EPICS *.db files use $(xx),
SNL and shell use ${xx},
so we support both conventions.

32

Macro Example

1. Create display “sub.bob”
– Label with text “Motor $(N)”
– TextUpdate with PV “loc://pos$(N)(10)”
– ActionButton with PV Name “loc://pos$(N)(10)”

and Action to “Write PV” value 20
– Copy that button, update to set PV to 30

2. Create display “top.bob”
– ActionButton with Action to open sub.bob with N=1
– Copy/paste the button, update to N=2

3. Execute top.bob, press buttons

sub.bob

“Motor $(N)”

sub.bob

“Motor 1”

sub.bob

“Motor 2”

top.bob
N=1

N=2

33

Macros
• Default values: $(MACRO=default)

Allows standalone testing
without passing values into
display

• To enter macro for Boolean
Press the “$” macro button

Select valid option
from drop-down …

.. or enter a macro

34

Macro Fallbacks
When macro is not defined, falls back to

– Widget Properties
• Uses the internal property name shown in tool-tip of Properties view
• Note how tooltip is usually preset to “$(pv_name)\n$(pv_value)”
• Action Button has PV Name property.

It’s not used directly as in other widgets with PV name,
but in “Write PV” the PV name is preset to $(pv_name)

• Action Button text is preset to “$(actions)”

– Java Properties
• $(os.name)

– Environment Variables
• $(HOME), $(USER)

35

Predefined Macros

$(DID): Unique display identifier, useful for per-display PVs
 loc://x$(DID)(10)

$(DNAME): Display Name

36

Group Widget

Contains other widgets

Visual Effect:
– Border, Name

Practical Effect:
– Group can define macros for contained widgets
– Group can be moved, copied/pasted as one unit in editor

37

Group Widget

1) Add Group Widget

2) Move other widgets
inside the Group

Active Group is
highlighted

38

Group Properties

• Name:
Shown in border

• Style:
“Group Box” for named border

• Macros:
Passed to contained widgets

39

Group Editing Shortcuts

1. Select Widgets

2. Context menu “Create ..”

1. Select Group

2. Context Menu “Remove..”

40

Embedded Display

Hosts a complete *.bob file within a widget

Allows composing higher-level displays from smaller displays:
– Per-device *.bob
– Show multiple devices in one display

41

Embedded Display Example

1. Create display “sub.bob” (or use the one created earlier)
– Label with text “Motor $(N)”
– TextUpdate with PV “loc://pos$(N)(10)”

2. Create display “main.bob”
– Embedded Display, File sub.bob, Macros N=1
– Copy/paste the Embedded Display, update to N=2

3. Execute main.bob

sub.bob

“Motor $(N)”

main.bob

N=2

sub.bob

“Motor 1”

N=1

sub.bob

“Motor 1”

42

Embedded Display Sizes

a) Embedded Display Size
– Size of the widget that will host the *.bob
– Defined by the widget Width and Height properties

b) Content Size
– Size of the *.bob
– Defined by that Display Width and Height properties

What if those sizes differ?

43

Embedded Display Resize Options
No Resize Size content

to fit widget
Size widget
to fit
content

ü No Resize usually best. Scrollbars appear as needed.

- Resizing results in odd font sizes or widgets that outgrow their initial space.

44

Embedded Display Editing

45

See Help, Preference Settings

Start phoebus with “-settings /path/to/my_settings.ini”:
org.phoebus.ui/top_resources=/home/controls/displays/main.bob, Start Page |
 http://controls.my.site/displays/main.bob, Start Page

– File system: Use NFS or ‘git pull’ to distribute files
– http: All users always see the same set of files

Top Resources

4646

4747

Many Widgets and Properties
Compared to earlier EPICS display tools,

– Group Widget instead of Lines
– LED instead of Circle-with-changing-color
– Tab/Navigation Tabs instead of buttons, local PVs, conditional visibility,..

Display describes Meaning:
– Group of related widgets
– LED for binary PV, not circle that happens to change color

 Files with meaning are easier to translate into the next tool

48

Widget Classes

• Instead of creating a Label with large font, define a “TITLE”
class for the Label

• Instead of creating an LED with Orange color, define a
“WARNING” LED class

49

Editing *.bcf Widget Class Files Name Defines a widget Class:
‘WARNING’ LED,
‘TITLE’ Label,
…Slightly different editor behavior

Checked Property:
Value becomes part
of class definition

50

Using Widget Classes Select Widget Class

Disabled:
Cannot change the
class-based property

Class Indicator:
Property is handled by
class

Context Menu:
Re-load classes in
case *.bcf is changed
while editing display

51

Class Details
• *.bcf files define widget classes

– Label of class TITLE uses font XYZ

• When editing a *.bob file, classes are applied.
Add Label, select Class TITLE:
– Font is set to XYZ
– Can no longer change the font
– File is saved with font=XYZ, marked as “use_class”

• *.bob files use widget classes, if they are defined.
 Open a file with Label of class TITLE, and
a) TITLE is a known class:

Whatever that class defines is used. If it sets font=EFG, that’ll be used.
b) TITLE is not a known class:

Using font=XYZ as saved in file.

52

Compare *.bcf and *.bob to *.css and *.html
*.bcf classes are similar to *.css style settings,
*.bob files are similar to *.html content

a) Have same *.bcf/*.css
à Display looks the same

b) Use different *.bcf/*.css
à Display looks as requested in my *.bcf/*.css

c) Have no *.bcf/*.css
à*.html turns into rubbish, lacking any description of what to look like.

 *.bob display looks as seen by last person who edited it,
 since the class settings effective at that time are in the *.bob file.

53

Rules
• Ideally, use widgets’ built-in functionality

– Value of PV displayed in TextUpdate, LED, ..
– Alarm indicated via Border

• Sometimes useful to for example hide a widget, i.e. change
visibility based on a PV
– Rules can accomplish this
– .. But functionality may not be obvious to the next person who needs to

maintain a display

54

Adding a Rule
• Add TextUpdate widget

• Set PV to sim://ramp(0, 10, 1)

• Open Widget’s Rules

• Add Rule, name it “Hide”

• Select “visible” property

• Add PV sim://ramp(0, 10, 1)

• Add Boolean
Expression
“pv0>8”

• Un-check value

• Run

55

Rules Detail
• Triggered by at least one PV

– May use additional non-trigger PVs

• Expressions use pv0, pv1, .., pvStr0,
pvStr1, .. to access PVs’ values

• Rule internally converted to Jython
– Use preview to debug

• “else: ..” sets property to original value

56

Scripts
• Scripts are attached to a widget

• Triggered by at least one PV
– May use additional non-trigger PVs

• Invoked with
– pvs[] – Array of requested PVs
– widget – The widget

• Script can
– Read & write the received PVs
– Set widget properties
– Locate other widgets in the display
– Invoke any Java code in the product
– Be very powerful
– Result in an unmaintainable mess

• One Script Executor per *.bob file,
Runs in background thread
– Slow scripts do not block the UI
– One script per display at a time

a) Many short-duration scripts
b) One that never quits

57

Rules vs. Scripts

• Both are in the end Jython code

• Both should be the exception.
Plain displays don’t need them.
But can be powerful,
replacing separate custom Java/Python/C/C++ applications.

• Prefer Rules because they describe meaning, easier to
maintain

58

When to use a script

• It’s simple, well documented, and tremendously improves the UI

• Would be a one-of, specialized, hard to maintain, separate
application anyway.
With a script, at least its integrated into the operator UI

Examples:

• Turn scalar PVs into loc://waveform for guideline in XYPlot

• Fill display with 50 widgets based on config file,
examples/template_and_script

• Add information from web service to display

59

When not to use a script

• It adds logic to the display that should be on the IOC
– Display should only display PVs and allow user to write PVs.
– Display must never do anything

• You have to ask for help implementing the script
– If you can’t implement it, you can’t maintain it, either

Examples

• Open relieve valve when pressure too high.
Ramp Power Supply.
– What if somebody closes the display? Opens two displays?

• Wiggle something on the display
– It’s not a video game

60

Summary
Display Builder is powerful
Editor and Runtime with
many Widgets, Macros etc.

Keep it Simple

1. Add a Widget

2. Enter Label’s Text or
Widget’s PV Name

3. Done

