
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Python Channel Access Clients

Kay Kasemir

Feb. 2022

2

Channel Access Operations

• ‘connect’

• ‘get’, ‘get-callback’, ‘monitor’

• ‘put’, ‘put-callback’

• ‘disconnect’

3

‘connect’

• Based on channel name, UDP search, ..
– See earlier Channel Access overview

• Connection might take a few seconds

• Network interruptions do happen
– CA client libraries will automatically re-connect
– API for being notified about connect/reconnect

4

‘disconnect’

• A long-running program might
– Connect PVs ”A”, “B”, “C”, use them for a while, disconnect
– Connect PVs ”X”, “Y”, “Z”, use them for a while, disconnect

Cleanup resources on the CA server/IOC, reduce network traffic

Quick and dirty script may just connect, use, quit

5

‘get’, ‘get-callback’, ‘monitor’ - read, subscribe

• ‘get’
– Request value
– Wait for value (with timeout of ~ seconds)

• ‘get-callback’
– Request value
– Callback invoked once as value arrives

• ‘monitor’
– Register for updates
– Callback invoked whenever a value arrives, until monitor cancelled

6

‘put’, ‘put-callback’ - write

• ‘put’
– Send a value
– Error in case channel not connected right now, or no write access.

Otherwise done.

• ‘put-callback’
– Send a value
– Callback invoked once the value has been received by CA server and

‘completed’.
For PV related to motor record on IOC, this can mean motor drive has
been energized, motor moved to appropriate target location, then
performed N adjustments to perfectly reach the desired position, and
finally motor drive was de-energized.

7

Higher Level CA Client Bindings

• Cached PVs
– When first asked for a channel, some PV object is created which

connects and tracks connection state.
– When your program later asks for the same PV, it gets that cached PV

which is already connected

• Subscribed
– PV always monitors. If you read the value of a PV, you get the most

recent monitor right away

• Write
– Writing a PV tends to be the plain ‘put’, a fire-and-forget that doesn’t

delay your program and will eventually reach the CA server/IOC

è Convenient and performant for most clients

8

Python
Example

9

Automation: This doesn’t cut it

write 10 to ”motor:setpoint”

read detector data

save data in file for “position10”

Your motor might still be moving while you take data

10

Automation: Not ideal, either

write 10 to ”motor:setpoint”

while abs(read(“motor:position”) – 10) < 0.1:
sleep 1 second

OK, we’re at the desired position
read detector data

save data in file for “position10”

Maybe,
maybe not

11

Automation: How do you know you’re “done”?

Time

Temp,
pos,
… Setpoint

Readback
done?

done? done!

12

Automation: Use ’put-callback’

• Only logic on IOC really knows when it’s done
– Motor record: Performed initial backlash-compensated move, then

retries, now motor is at rest and we’re “done”
– Lakeshore controller: Calc records, busy record, sequence knows when

it’s “done”

èWith ‘put-callback’, IOC will tell you when it’s “done”

Alas, no way to tell from the outside if a PV supports put-
callback.
If not, put-callback returns right away even though the device is
not “done”.

13

Automation: Use explicit ‘get’, ‘get-callback’

• In a higher level library, ‘PV.read()’ might only tell you about
the last received monitor.
The actual record might have a new value that you will soon
receive via a monitor, but unclear when exactly. Based on
MDEL, you might never get the exact value.

• Explicit ‘get’ or ‘get-callback’ will force a round-trip
read/response, fetching the most recent value.

14

Another
Python
Example

15

Yet Another
Python
Example

More:
https://github.com/pyepics/pyepics

https://github.com/pyepics/pyepics

16

Other CA Client Options

• Python ‘PVA’ client for the new PVAccess Protocol

• Matlab/Octave/Scilab MCA resp. LabCA bindings

• SNL/Sequencer

• Display Builder scripts

• Plain C code calling CA.lib

• Plain Java code calling JCA.jar

17

Summary

• Higher level bindings like python are pretty easy:
– caget, caput

• For dependable automation, remember get/put-callback
.. and use IOC that supports it

